159 research outputs found

    The Arab world's contribution to solid waste literature: a bibliometric analysis

    Get PDF
    BACKGROUND: Environmental and health-related effects of solid waste material are considered worldwide problems. The aim of this study was to assess the volume and impact of Arab scientific output published in journals indexed in the Science Citation Index (SCI) on solid waste. METHODS: We included all the documents within the SCI whose topic was solid waste from all previous years up to 31 December 2012. In this bibliometric analysis we sought to evaluate research that originated from Arab countries in the field of solid waste, as well as its relative growth rate, collaborative measures, productivity at the institutional level, and the most prolific journals. RESULTS: A total of 382 (2.35 % of the overall global research output in the field of solid waste) documents were retrieved from the Arab countries. The annual number of documents published in the past three decades (1982–2012) indicated that research productivity demonstrated a noticeable rise during the last decade. The highest number of articles associated with solid waste was that of Egypt (22.8 %), followed by Tunisia (19.6), and Jordan (13.4 %). the total number of citations over the analysed years at the date of data collection was 4,097, with an average of 10.7 citations per document. The h-index of the citing articles was 31. Environmental science was the most researched topic, represented by 175 (45.8 %) articles. Waste Management was the top active journal. The study recognized 139 (36.4 %) documents from collaborations with 25 non-Arab countries. Arab authors mainly collaborated with countries in Europe (22.5 %), especially France, followed by countries in the Americas (9.4 %), especially the USA. The most productive institution was the American University of Beirut, Lebanon, with 6.3 % of total publications. CONCLUSIONS: Despite the expected increase in solid waste production from Arab world, research activity about solid waste is still low. Governments must invest more in solid waste research to avoid future unexpected problems. Finally, since solid waste is a multidisciplinary science, research teams in engineering, health, toxicology, environment, geology and others must be formulated to produce research in solid waste from different scientific aspects

    Sleep habits and sleep problems among Palestinian students

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>The aim of this study was to describe sleep habits and sleep problems in a population of undergraduates in Palestine. Association between self-reported sleep quality and self-reported academic achievement was also investigated.</p> <p>Methods</p> <p>Sleep habits and problems were investigated using a convenience sample of students from An-Najah National University, Palestine. The study was carried out during spring semester, 2009. A self-administered questionnaire developed based on The Diagnostic and Statistical Manual of Mental Disorders IV criteria and Pittsburgh Sleep Quality Index was used.</p> <p>Results</p> <p>400 students with a mean age of 20.2 ± 1.3 were studied. Reported mean duration of night sleep in the study sample was 6.4 ± 1.1 hours. The majority (58.3%) of students went to bed before midnight and 18% of the total sample woke up before 6 am. Sleep latency of more than one hour was present in 19.3% of the students. Two thirds (64.8%) of the students reported having at least one nocturnal awakening per night. Nightmares were the most common parasomnia reported by students. Daytime naps were common and reported in 74.5% of the study sample. Sleep quality was reported as "poor" in only 9.8% and was significantly associated with sleep latency, frequency of nocturnal awakenings, time of going to bed, nightmares but not with academic achievement.</p> <p>Conclusion</p> <p>Sleep habits among Palestinian undergraduates were comparable to those reported in European studies. Sleep problems were common and there was no significant association between sleep quality and academic achievement.</p

    Community pharmacists’ perspectives on cardiovascular disease pharmaceutical care in the United Arab Emirates: a questionnaire survey-based analysis

    Get PDF
    Background: Community pharmacists play an intermediary role between prescribing physicians and patients in the United Arab Emirates (UAE) and thus are responsible for ensuring that patients receive optimal cardiovascular disease (CVD) pharmaceutical care.Methods: we used a cross-sectional design to assess the perceptions and practices of community pharmacists concerning pharmaceutical care for patients with CVD. A trained researcher visited randomly selected community pharmacies and used a structured questionnaire to conduct in-person interviews with pharmacists. The questionnaire collected demographic data and information on perceptions and practices regarding CVD pharmaceutical care.Results: Five hundred and fifty-one participants were recruited. The average participant age (mean ± SD) was 35 ± 2.7 years. The average perception score regarding CVD prevention and management was 75.6% (95% confidence interval [CI] 77.1%–74.2%), and the average practice score for CVD prevention and management was 87.1% (95% CI 76.5%–79.6%). Bivariate analysis revealed that gender (p = 0.001), education level (p &lt; 0.001), pharmacy position (p = 0.004), work experience (p &lt; 0.001), number of patients served per day (p &lt; 0.001) and being trained on CVD prevention and management (p &lt; 0.001) were significantly associated with perceptions about the prevention and management of CVD. Better practice scores were seen among older participants (OR 1.01; 95% CI 1–1.019), postgraduates (OR 1.77; 95% CI 1.66–1.89), workers at chain pharmacies (OR 1.24; 95% CI 1.11–1.39), pharmacists in charge (OR 1.22; 95% CI 1.01–1.47), pharmacists with &gt;10 years of experience (OR 11.3; 95% CI 6.01–15.62), pharmacists with 6–10 years of experience (OR 4.42; 95% CI 3.90–5) and pharmacists trained on CVD prevention and management (OR 1.29; 95% CI 1.15–1.46).Conclusion: Pharmacy practitioners working in community pharmacies in the UAE actively engage in delivering pharmaceutical care to patients, playing a role in CVD management and prevention. However, they showed low levels of involvement in other healthcare services, specifically in screening and measuring patients’ weight, glucose levels, and blood pressure, monitoring treatment responses, maintaining medical records, and reviewing medication refill histories. Activities such as educating patients, providing medication counseling, offering support for treatment adherence, and fostering collaborative relationships with other healthcare providers should be encouraged among UAE community pharmacists to ensure the provision of high-quality patient care

    Artificial Intelligence in Government Services: A Systematic Literature Review

    Get PDF
    The aim of this paper is to provide an overview on how artificial intelligence is shaping the digital era, in policy making and governmental terms. In doing so, it discloses new opportunities and discusses its implications to be considered by policy-makers. The research uses a systematic literature review, which includes more than one technique of data analysis in order to generate comprehensiveness and rich knowledge, we use: a bibliometric analysis and a content analysis. While artificial intelligence is identified as an extension of digital transformation, the results suggest the need to deepen scientific research in the fields of public administration, governmental law and business economics, areas where digital transformation still stands out from artificial intelligence. Although bringing together public and private sectors, to collaborate in the public service delivery, presents major advantages to policy makers, evidence has also shown the existence of negative effects of such collaboration.info:eu-repo/semantics/publishedVersio

    A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study

    Get PDF
    [EN] Performance evaluation is relevant for supporting managerial decisions related to the improvement of public emergency departments (EDs). As different criteria from ED context and several alternatives need to be considered, selecting a suitable Multicriteria Decision-Making (MCDM) approach has become a crucial step for ED performance evaluation. Although some methodologies have been proposed to address this challenge, a more complete approach is still lacking. This paper bridges this gap by integrating three potent MCDM methods. First, the Fuzzy Analytic Hierarchy Process (FAHP) is used to determine the criteria and sub-criteria weights under uncertainty, followed by the interdependence evaluation via fuzzy Decision-Making Trial and Evaluation Laboratory(FDEMATEL). The fuzzy logic is merged with AHP and DEMATEL to illustrate vague judgments. Finally, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used for ranking EDs. This approach is validated in a real 3-ED cluster. The results revealed the critical role of Infrastructure (21.5%) in ED performance and the interactive nature of Patient safety (C+R =12.771). Furthermore, this paper evidences the weaknesses to be tackled for upgrading the performance of each ED.Ortiz-Barrios, M.; Alfaro Saiz, JJ. (2020). A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study. International Journal of Information Technology & Decision Making. 19(6):1485-1548. https://doi.org/10.1142/S0219622020500364S14851548196Lord, K., Parwani, V., Ulrich, A., Finn, E. B., Rothenberg, C., Emerson, B., … Venkatesh, A. K. (2018). Emergency department boarding and adverse hospitalization outcomes among patients admitted to a general medical service. The American Journal of Emergency Medicine, 36(7), 1246-1248. doi:10.1016/j.ajem.2018.03.043Sørup, C. M., Jacobsen, P., & Forberg, J. L. (2013). Evaluation of emergency department performance – a systematic review on recommended performance and quality-in-care measures. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 21(1). doi:10.1186/1757-7241-21-62Farokhi, S., & Roghanian, E. (2018). Determining quantitative targets for performance measures in the balanced scorecard method using response surface methodology. Management Decision, 56(9), 2006-2037. doi:10.1108/md-08-2017-0772Ortiz Barrios, M. A., & Felizzola Jiménez, H. (2016). Use of Six Sigma Methodology to Reduce Appointment Lead-Time in Obstetrics Outpatient Department. Journal of Medical Systems, 40(10). doi:10.1007/s10916-016-0577-3Sunder M., V., Ganesh, L. S., & Marathe, R. R. (2018). A morphological analysis of research literature on Lean Six Sigma for services. International Journal of Operations & Production Management, 38(1), 149-182. doi:10.1108/ijopm-05-2016-0273Bergeron, B. P. (2017). Performance Management in Healthcare. doi:10.4324/9781315102214Santos, S. P., Belton, V., Howick, S., & Pilkington, M. (2018). Measuring organisational performance using a mix of OR methods. Technological Forecasting and Social Change, 131, 18-30. doi:10.1016/j.techfore.2017.07.028Ho, W., & Ma, X. (2018). The state-of-the-art integrations and applications of the analytic hierarchy process. European Journal of Operational Research, 267(2), 399-414. doi:10.1016/j.ejor.2017.09.007Dargi, A., Anjomshoae, A., Galankashi, M. R., Memari, A., & Tap, M. B. M. (2014). Supplier Selection: A Fuzzy-ANP Approach. Procedia Computer Science, 31, 691-700. doi:10.1016/j.procs.2014.05.317Jing, M., Jie, Y., Shou-yi, L., & Lu, W. (2015). Application of fuzzy analytic hierarchy process in the risk assessment of dangerous small-sized reservoirs. International Journal of Machine Learning and Cybernetics, 9(1), 113-123. doi:10.1007/s13042-015-0363-4Samanlioglu, F., Taskaya, Y. E., Gulen, U. C., & Cokcan, O. (2018). A Fuzzy AHP–TOPSIS-Based Group Decision-Making Approach to IT Personnel Selection. International Journal of Fuzzy Systems, 20(5), 1576-1591. doi:10.1007/s40815-018-0474-7CHEN, M.-F., TZENG, G.-H., & TANG, T.-I. (2005). FUZZY MCDM APPROACH FOR EVALUATION OF EXPATRIATE ASSIGNMENTS. International Journal of Information Technology & Decision Making, 04(02), 277-296. doi:10.1142/s0219622005001520Gul, M., Celik, E., Gumus, A. T., & Guneri, A. F. (2016). Emergency department performance evaluation by an integrated simulation and interval type-2 fuzzy MCDM-based scenario analysis. European J. of Industrial Engineering, 10(2), 196. doi:10.1504/ejie.2016.075846Jovčić, Průša, Dobrodolac, & Švadlenka. (2019). A Proposal for a Decision-Making Tool in Third-Party Logistics (3PL) Provider Selection Based on Multi-Criteria Analysis and the Fuzzy Approach. Sustainability, 11(15), 4236. doi:10.3390/su11154236Saaty, T. L., & Vargas, L. G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. International Series in Operations Research & Management Science. doi:10.1007/978-1-4614-3597-6Vargas, L. G. (2016). Voting with Intensity of Preferences. International Journal of Information Technology & Decision Making, 15(04), 839-859. doi:10.1142/s0219622016400058Lee, K.-C., Tsai, W.-H., Yang, C.-H., & Lin, Y.-Z. (2018). An MCDM approach for selecting green aviation fleet program management strategies under multi-resource limitations. Journal of Air Transport Management, 68, 76-85. doi:10.1016/j.jairtraman.2017.06.011Labib, A., & Read, M. (2015). A hybrid model for learning from failures: The Hurricane Katrina disaster. Expert Systems with Applications, 42(21), 7869-7881. doi:10.1016/j.eswa.2015.06.020Hosseini, S., & Khaled, A. A. (2016). A hybrid ensemble and AHP approach for resilient supplier selection. Journal of Intelligent Manufacturing, 30(1), 207-228. doi:10.1007/s10845-016-1241-yZavadskas, E. K., Govindan, K., Antucheviciene, J., & Turskis, Z. (2016). Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Economic Research-Ekonomska Istraživanja, 29(1), 857-887. doi:10.1080/1331677x.2016.1237302Lolli, F., Balugani, E., Ishizaka, A., Gamberini, R., Butturi, M. A., Marinello, S., & Rimini, B. (2019). On the elicitation of criteria weights in PROMETHEE-based ranking methods for a mobile application. Expert Systems with Applications, 120, 217-227. doi:10.1016/j.eswa.2018.11.030De Almeida Filho, A. T., Clemente, T. R. N., Morais, D. C., & de Almeida, A. T. (2018). Preference modeling experiments with surrogate weighting procedures for the PROMETHEE method. European Journal of Operational Research, 264(2), 453-461. doi:10.1016/j.ejor.2017.08.006Sun, G., Guan, X., Yi, X., & Zhou, Z. (2018). An innovative TOPSIS approach based on hesitant fuzzy correlation coefficient and its applications. Applied Soft Computing, 68, 249-267. doi:10.1016/j.asoc.2018.04.004Frazão, T. D. C., Camilo, D. G. G., Cabral, E. L. S., & Souza, R. P. (2018). Multicriteria decision analysis (MCDA) in health care: a systematic review of the main characteristics and methodological steps. BMC Medical Informatics and Decision Making, 18(1). doi:10.1186/s12911-018-0663-1Ortiz-Barrios, M. A., Herrera-Fontalvo, Z., Rúa-Muñoz, J., Ojeda-Gutiérrez, S., De Felice, F., & Petrillo, A. (2018). An integrated approach to evaluate the risk of adverse events in hospital sector. Management Decision, 56(10), 2187-2224. doi:10.1108/md-09-2017-0917Al Salem, A. A., & Awasthi, A. (2018). Investigating rank reversal in reciprocal fuzzy preference relation based on additive consistency: Causes and solutions. Computers & Industrial Engineering, 115, 573-581. doi:10.1016/j.cie.2017.11.027Aires, R. F. de F., & Ferreira, L. (2019). A new approach to avoid rank reversal cases in the TOPSIS method. Computers & Industrial Engineering, 132, 84-97. doi:10.1016/j.cie.2019.04.023Emrouznejad, A., & Yang, G. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4-8. doi:10.1016/j.seps.2017.01.008Arya, A., & Yadav, S. P. (2017). Development of FDEA Models to Measure the Performance Efficiencies of DMUs. International Journal of Fuzzy Systems, 20(1), 163-173. doi:10.1007/s40815-017-0325-yMufazzal, S., & Muzakkir, S. M. (2018). A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals. Computers & Industrial Engineering, 119, 427-438. doi:10.1016/j.cie.2018.03.045Kaliszewski, I., & Podkopaev, D. (2016). Simple additive weighting—A metamodel for multiple criteria decision analysis methods. Expert Systems with Applications, 54, 155-161. doi:10.1016/j.eswa.2016.01.042Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2018). A new multi-criteria decision making approach for sustainable material selection problem: A critical study on rank reversal problem. Journal of Cleaner Production, 182, 466-484. doi:10.1016/j.jclepro.2018.02.062Chen, Z., Ming, X., Zhang, X., Yin, D., & Sun, Z. (2019). A rough-fuzzy DEMATEL-ANP method for evaluating sustainable value requirement of product service system. Journal of Cleaner Production, 228, 485-508. doi:10.1016/j.jclepro.2019.04.145Jumaah, F. M., Zadain, A. A., Zaidan, B. B., Hamzah, A. K., & Bahbibi, R. (2018). Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement, 118, 83-95. doi:10.1016/j.measurement.2018.01.011Singh, A., & Prasher, A. (2017). Measuring healthcare service quality from patients’ perspective: using Fuzzy AHP application. Total Quality Management & Business Excellence, 30(3-4), 284-300. doi:10.1080/14783363.2017.1302794Otay, İ., Oztaysi, B., Cevik Onar, S., & Kahraman, C. (2017). Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowledge-Based Systems, 133, 90-106. doi:10.1016/j.knosys.2017.06.028Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. International Journal of Production Economics, 195, 106-117. doi:10.1016/j.ijpe.2017.10.013Gul, M., Guneri, A. F., & Nasirli, S. M. (2018). A fuzzy-based model for risk assessment of routes in oil transportation. International Journal of Environmental Science and Technology, 16(8), 4671-4686. doi:10.1007/s13762-018-2078-zKazancoglu, Y., Kazancoglu, I., & Sagnak, M. (2018). Fuzzy DEMATEL-based green supply chain management performance. Industrial Management & Data Systems, 118(2), 412-431. doi:10.1108/imds-03-2017-0121Abdullah, L., & Zulkifli, N. (2015). Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: An application to human resource management. Expert Systems with Applications, 42(9), 4397-4409. doi:10.1016/j.eswa.2015.01.021Ashtiani, M., & Azgomi, M. A. (2016). A hesitant fuzzy model of computational trust considering hesitancy, vagueness and uncertainty. Applied Soft Computing, 42, 18-37. doi:10.1016/j.asoc.2016.01.023Zyoud, S. H., & Fuchs-Hanusch, D. (2017). A bibliometric-based survey on AHP and TOPSIS techniques. Expert Systems with Applications, 78, 158-181. doi:10.1016/j.eswa.2017.02.016Scholz, S., Ngoli, B., & Flessa, S. (2015). Rapid assessment of infrastructure of primary health care facilities – a relevant instrument for health care systems management. BMC Health Services Research, 15(1). doi:10.1186/s12913-015-0838-8Ivlev, I., Vacek, J., & Kneppo, P. (2015). Multi-criteria decision analysis for supporting the selection of medical devices under uncertainty. European Journal of Operational Research, 247(1), 216-228. doi:10.1016/j.ejor.2015.05.075Kovacs, E., Strobl, R., Phillips, A., Stephan, A.-J., Müller, M., Gensichen, J., & Grill, E. (2018). Systematic Review and Meta-analysis of the Effectiveness of Implementation Strategies for Non-communicable Disease Guidelines in Primary Health Care. Journal of General Internal Medicine, 33(7), 1142-1154. doi:10.1007/s11606-018-4435-5Morley, C., Unwin, M., Peterson, G. M., Stankovich, J., & Kinsman, L. (2018). Emergency department crowding: A systematic review of causes, consequences and solutions. PLOS ONE, 13(8), e0203316. doi:10.1371/journal.pone.0203316Hermann, R. M., Long, E., & Trotta, R. L. (2019). Improving Patients’ Experiences Communicating With Nurses and Providers in the Emergency Department. Journal of Emergency Nursing, 45(5), 523-530. doi:10.1016/j.jen.2018.12.001Hawley, K. L., Mazer-Amirshahi, M., Zocchi, M. S., Fox, E. R., & Pines, J. M. (2015). Longitudinal Trends in U.S. Drug Shortages for Medications Used in Emergency Departments (2001-2014). Academic Emergency Medicine, 23(1), 63-69. doi:10.1111/acem.12838Stang, A. S., Crotts, J., Johnson, D. W., Hartling, L., & Guttmann, A. (2015). Crowding Measures Associated With the Quality of Emergency Department Care: A Systematic Review. Academic Emergency Medicine, 22(6), 643-656. doi:10.1111/acem.12682Chanamool, N., & Naenna, T. (2016). Fuzzy FMEA application to improve decision-making process in an emergency department. Applied Soft Computing, 43, 441-453. doi:10.1016/j.asoc.2016.01.007Farup, P. G. (2015). Are measurements of patient safety culture and adverse events valid and reliable? Results from a cross sectional study. BMC Health Services Research, 15(1). doi:10.1186/s12913-015-0852-xCarter, E. J., Pouch, S. M., & Larson, E. L. (2013). The Relationship Between Emergency Department Crowding and Patient Outcomes: A Systematic Review. Journal of Nursing Scholarship, 46(2), 106-115. doi:10.1111/jnu.12055Ebben, R. H. A., Siqeca, F., Madsen, U. R., Vloet, L. C. M., & van Achterberg, T. (2018). Effectiveness of implementation strategies for the improvement of guideline and protocol adherence in emergency care: a systematic review. BMJ Open, 8(11), e017572. doi:10.1136/bmjopen-2017-017572Innes, G. D., Sivilotti, M. L. A., Ovens, H., McLelland, K., Dukelow, A., Kwok, E., … Chochinov, A. (2018). Emergency overcrowding and access block: A smaller problem than we think. CJEM, 21(2), 177-185. doi:10.1017/cem.2018.446Di Somma, S., Paladino, L., Vaughan, L., Lalle, I., Magrini, L., & Magnanti, M. (2014). Overcrowding in emergency department: an international issue. Internal and Emergency Medicine, 10(2), 171-175. doi:10.1007/s11739-014-1154-8Uthman, O. A., Walker, C., Lahiri, S., Jenkinson, D., Adekanmbi, V., Robertson, W., & Clarke, A. (2018). General practitioners providing non-urgent care in emergency department: a natural experiment. BMJ Open, 8(5), e019736. doi:10.1136/bmjopen-2017-019736Razzak, J. A., Baqir, S. M., Khan, U. R., Heller, D., Bhatti, J., & Hyder, A. A. (2013). Emergency and trauma care in Pakistan: a cross-sectional study of healthcare levels. Emergency Medicine Journal, 32(3), 207-213. doi:10.1136/emermed-2013-202590Dart, R. C., Goldfrank, L. R., Erstad, B. L., Huang, D. T., Todd, K. H., Weitz, J., … Anderson, V. E. (2018). Expert Consensus Guidelines for Stocking of Antidotes in Hospitals That Provide Emergency Care. Annals of Emergency Medicine, 71(3), 314-325.e1. doi:10.1016/j.annemergmed.2017.05.021Mkoka, D. A., Goicolea, I., Kiwara, A., Mwangu, M., & Hurtig, A.-K. (2014). Availability of drugs and medical supplies for emergency obstetric care: experience of health facility managers in a rural District of Tanzania. BMC Pregnancy and Childbirth, 14(1). doi:10.1186/1471-2393-14-108Beck, M. J., Okerblom, D., Kumar, A., Bandyopadhyay, S., & Scalzi, L. V. (2016). Lean intervention improves patient discharge times, improves emergency department throughput and reduces congestion. Hospital Practice, 44(5), 252-259. doi:10.1080/21548331.2016.1254559Morais Oliveira, M., Marti, C., Ramlawi, M., Sarasin, F. P., Grosgurin, O., Poletti, P.-A., … Rutschmann, O. T. (2018). Impact of a patient-flow physician coordinator on waiting times and length of stay in an emergency department: A before-after cohort study. PLOS ONE, 13(12), e0209035. doi:10.1371/journal.pone.0209035Vermeulen, M. J., Stukel, T. A., Boozary, A. S., Guttmann, A., & Schull, M. J. (2016). The Effect of Pay for Performance in the Emergency Department on Patient Waiting Times and Quality of Care in Ontario, Canada: A Difference-in-Differences Analysis. Annals of Emergency Medicine, 67(4), 496-505.e7. doi:10.1016/j.annemergmed.2015.06.028Singh, S., Lin, Y.-L., Nattinger, A. B., Kuo, Y.-F., & Goodwin, J. S. (2015). Variation in readmission rates by emergency departments and emergency department providers caring for patients after discharge. Journal of Hospital Medicine, 10(11), 705-710. doi:10.1002/jhm.2407Källberg, A.-S., Göransson, K. E., Florin, J., Östergren, J., Brixey, J. J., & Ehrenberg, A. (2015). Contributing factors to errors in Swedish emergency departments. International Emergency Nursing, 23(2), 156-161. doi:10.1016/j.ienj.2014.10.002Riga, M., Vozikis, A., Pollalis, Y., & Souliotis, K. (2015). MERIS (Medical Error Reporting Information System) as an innovative patient safety intervention: A health policy perspective. Health Policy, 119(4), 539-548. doi:10.1016/j.healthpol.2014.12.006Norman, G. R., Monteiro, S. D., Sherbino, J., Ilgen, J. S., Schmidt, H. G., & Mamede, S. (2017). The Causes of Errors in Clinical Reasoning. Academic Medicine, 92(1), 23-30. doi:10.1097/acm.0000000000001421Lisbon, D., Allin, D., Cleek, C., Roop, L., Brimacombe, M., Downes, C., & Pingleton, S. K. (2014). Improved Knowledge, Attitudes, and Behaviors After Implementation of TeamSTEPPS Training in an Academic Emergency Department. American Journal of Medical Quality, 31(1), 86-90. doi:10.1177/1062860614545123Li, L., Georgiou, A., Vecellio, E., Eigenstetter, A., Toouli, G., Wilson, R., & Westbrook, J. I. (2015). The Effect of Laboratory Testing on Emergency Department Length of Stay: A Multihospital Longitudinal Study Applying a Cross‐classified Random‐effect Modeling Approach. Academic Emergency Medicine, 22(1), 38-46. doi:10.1111/acem.12565Telem, D. A., Yang, J., Altieri, M., Patterson, W., Peoples, B., Chen, H., … Pryor, A. D. (2016). Rates and Risk Factors for Unplanned Emergency Department Utilization and Hospital Readmission Following Bariatric Surgery. Annals of Surgery, 263(5), 956-960. doi:10.1097/sla.0000000000001536Rigobello, M. C. G., Carvalho, R. E. F. L. de, Guerreiro, J. M., Motta, A. P. G., Atila, E., & Gimenes, F. R. E. (2017). The perception of the patient safety climate by professionals of the emergency department. International Emergency Nursing, 33, 1-6. doi:10.1016/j.ienj.2017.03.003Farmer, B. (2016). Patient Safety in the Emergency Department. Emergency Medicine, 48(9), 396-404. doi:10.12788/emed.2016.0052Liu, H.-C., You, J.-X., Zhen, L., & Fan, X.-J. (2014). A novel hybrid multiple criteria decision making model for material selection with target-based criteria. Materials & Design, 60, 380-390. doi:10.1016/j.matdes.2014.03.071Kou, G., Ergu, D., & Shang, J. (2014). Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction. European Journal of Operational Research, 236(1), 261-271. doi:10.1016/j.ejor.2013.11.035Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2017). Supplier evaluation and selection in fuzzy environments: a review of MADM approaches. Economic Research-Ekonomska Istraživanja, 30(1), 1073-1118. doi:10.1080/1331677x.2017.1314828Barrios, M. A. O., De Felice, F., Negrete, K. P., Romero, B. A., Arenas, A. Y., & Petrillo, A. (2016). An AHP-Topsis Integrated Model for Selecting the Most Appropriate Tomography Equipment. International Journal of Information Technology & Decision Making, 15(04), 861-885. doi:10.1142/s021962201640006xYeh, D.-Y., & Cheng, C.-H. (2016). Performance Management of Taiwan’s National Hospitals. International Journal of Information Technology & Decision Making, 15(01), 187-213. doi:10.1142/s0219622014500199Chen, T.-Y. (2014). An Interactive Signed Distance Approach for Multiple Criteria Group Decision-Making Based on Simple Additive Weighting Method with Incomplete Preference Information Defined by Interval Type-2 Fuzzy Sets. International Journal of Information Technology & Decision Making, 13(05), 979-1012. doi:10.1142/s0219622014500229Gou, X., Xu, Z., & Liao, H. (2019). Hesitant Fuzzy Linguistic Possibility Degree-Based Linear Assignment Method for Multiple Criteria Decision-Making. International Journal of Information Technology & Decision Making, 18(01), 35-63. doi:10.1142/s0219622017500377Saksrisathaporn, K., Bouras, A., Reeveerakul, N., & Charles, A. (2016). Application of a Decision Model by Using an Integration of AHP and TOPSIS Approaches within Humanitarian Operation Life Cycle. International Journal of Information Technology & Decision Making, 15(04), 887-918. doi:10.1142/s0219622015500261Hsiao, B., & Chen, L.-H. (2019). Performance Evaluation for Taiwanese Hospitals by Multi-Activity Network Data Envelopment Analysis. International Journal of Information Technology & Decision Making, 18(03), 1009-1043. doi:10.1142/s0219622018500165Saaty, T. L., & Ergu, D. (2015). When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods. International Journal of Information Technology & Decision Making, 14(06), 1171-1187. doi:10.1142/s021962201550025xChang, K.-H., Chang, Y.-C., & Lee, Y.-T. (2014). Integrating TOPSIS and DEMATEL Methods to Rank the Risk of Failure of FMEA. International Journal of Information Technology & Decision Making, 13(06), 1229-1257. doi:10.1142/s0219622014500758Yeh, T.-M., & Huang, Y.-L. (2014). Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP. Renewable Energy, 66, 159-169. doi:10.1016/j.renene.2013.12.003Ortíz, M. A., Felizzola, H. A., & Isaza, S. N. (2015). A contrast between DEMATEL-ANP an
    corecore