79 research outputs found

    Computational prediction of ideal strength for a material

    Full text link
    The ideal strength is crucial for predicting material behavior under extreme conditions, which can provide insights into material limits, guide design and engineer for enhanced performance and durability. In this work, we present a method within an allows for the estimation of tensile, shear, and indentation strengths in any crystallographic direction or plane. We have examined the strain-stress relationships of several well-known structures and compared our findings with previous work, demonstrating the effectiveness of our approach. Moreover, we performed extensive investigations into the indentation strength of hexagonal WC, \b{eta}-SiC, and MgAl2O4l_2O_4. The current study uncovers the modes of structural deformation and the underlying atomistic mechanisms. The insights gained from this study have significant implications for the further exploration and design of superhard materials.Comment: 15 pages,7 figure

    REFORM: Removing False Correlation in Multi-level Interaction for CTR Prediction

    Full text link
    Click-through rate (CTR) prediction is a critical task in online advertising and recommendation systems, as accurate predictions are essential for user targeting and personalized recommendations. Most recent cutting-edge methods primarily focus on investigating complex implicit and explicit feature interactions. However, these methods neglect the issue of false correlations caused by confounding factors or selection bias. This problem is further magnified by the complexity and redundancy of these interactions. We propose a CTR prediction framework that removes false correlation in multi-level feature interaction, termed REFORM. The proposed REFORM framework exploits a wide range of multi-level high-order feature representations via a two-stream stacked recurrent structure while eliminating false correlations. The framework has two key components: I. The multi-level stacked recurrent (MSR) structure enables the model to efficiently capture diverse nonlinear interactions from feature spaces of different levels, and the richer representations lead to enhanced CTR prediction accuracy. II. The false correlation elimination (FCE) module further leverages Laplacian kernel mapping and sample reweighting methods to eliminate false correlations concealed within the multi-level features, allowing the model to focus on the true causal effects. Extensive experiments based on four challenging CTR datasets and our production dataset demonstrate that the proposed REFORM model achieves state-of-the-art performance. Codes, models and our dataset will be released at https://github.com/yansuoyuli/REFORM.Comment: 9 pages, 5 figure

    Macrophage inhibits the osteogenesis of fibroblasts in ultrahigh molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis

    Get PDF
    Background In the ultrahigh molecular weight polyethylene (UHMWPE) prosthetic environment, fibroblasts affected by wear particles have the capacity of osteogenesis to reduce osteolysis. We aimed to assess the effects of macrophages on the osteogenic capability of fibroblasts treated with UHMWPE wear particles. Methods The effect of different concentrations of UHMWPE (0, 0.01, 0.1, and 1 mg/ml, respectively) on macrophage proliferation were validated by MTT assay to determine the optimum one. The fibroblasts viability was further determined in the co-culture system of UHMWPE particles and macrophage supernatants. The experiment was designed as seven groups: (A) fibroblasts only; (B) fibroblasts + 1 mg/ml UHMWPE particles; and (C1–C5) fibroblasts + 1/16, 1/8, 1/4, 1/2, and 1/1 supernatants of macrophage cultures stimulated by 1 mg/ml UHMWPE particles vs. fibroblast complete media, respectively. Alizarin red staining was used to detect calcium accumulation. The expression levels of osteogenic proteins were detected by Western blot and ELISA, including alkaline phosphatase (ALP) and osteocalcin (OCN). Results The concentration of 0.1 mg/ml was considered as the optimum concentration for macrophage proliferation due to the survival rate and was highest among the four concentrations. Fibroblast viability was better in the group of fibroblasts + 1/16 ratio of macrophage supernatants stimulated by 1 mg/ml of UHMWPE particles than the other groups (1:8, 1:4, 1:2, 1:1). ALP and OCN expressions were significantly decreased in the group of fibroblasts + 1/4, 1/2, and 1/1 supernatants stimulated by 1 mg/ml of UHMWPE particles compared with other groups (1/8, 1/16) and the group of fibroblasts + 1 mg/ml UHMWPE (p < 0.5). Conclusions Macrophages are potentially involved in the periprosthetic osteolysis by reducing the osteogenic capability of fibroblasts treated with wear particles generated from UHMWPE materials in total hip arthroplasty.China Sholarship Council (Grant 201506370173)China. National Natural Science Foundation (Grant 31200739)China. National Natural Science Foundation (Grant 31470948

    Foliar δ13C Showed No Altitudinal Trend in an Arid Region and Atmospheric Pressure Exerted a Negative Effect on Plant δ13C

    No full text
    Previous studies have suggested foliar δ13C generally increases with altitude. However, some observations reported no changes or even decreased trends in foliar δ13C. We noted that all the studies in which δ13C increased with elevation were conducted in the human regions, whereas those investigations in which δ13C did not vary or decreased were conducted in areas with water stress. Thus, we proposed that the pattern of increasing δ13C with elevation is not a general one, and that δ13C may remain unchanged or decrease in plants grown in arid environments. To test the hypothesis, we sampled plants along altitude gradients on the shady and sunny slopes of Mount Tianshan characterized by arid and semiarid climates. The measurements of foliar δ13C showed no altitudinal trends for the plants grown on either of the slopes. Therefore, this study supported our hypothesis. In addition, the present study addressed the effect of atmospheric pressure on plant δ13C by accounting for the effects of temperature and precipitation on δ13C. This study found that the residual foliar δ13C increased with increasing altitude, suggesting that atmospheric pressure played a negative role in foliar δ13C

    MTHI‐former: Multilevel attention for two‐handed reconstruction from RGB image

    No full text
    Abstract Hand reconstruction is the foundation of virtual reality and human–computer interaction, but currently it still faces challenges such as blurred interaction edge and inter‐hand occlusion. To solve these challenges, in this letter, the authors propose a framework called Multilevel Two Hand Interactive Former (MTHI‐Former) which considers the vertices of a hand model as graph structures and learn the connectivity relationships information between vertices. In this framework, the authors introduce two novel modules. The first is the Multi‐branch Image Feature Extraction Module , which is utilized to obtain accurate hand features. The second is the Multilevel Two Hand Interaction Module , which is utilized to fuse interactive hand information to enhance the attention features of interactive edges, and fuse vertex relationships to determine the occlusion relationship between interactive hands. The authors compare their method with recent methods on the InterHand 2.6M dataset, and the experimental results show that their method outperforms other representative methods, achieving a result of 13.15 mm and an improvement in performance of about 18%

    A novel nonsense mutation in the MIP gene linked to congenital posterior polar cataracts in a Chinese family.

    No full text
    To detect the causative mutation for congenital posterior polar cataracts in a five-generation Chinese family and further explore the potential pathogenesis of this disease.Coding exons, with flanking sequences of five candidate genes, were screened using direct DNA sequencing. The identified mutations were confirmed by restriction fragment length polymorphism (RFLP) analysis. A full-length wild-type or an Y219* mutant aquaporin0 (AQP0) fused with an N-terminal FLAG tag, was transfected into HEK293T cells. For co-localization studies, FLAG-WT-AQP0 and Myc-Y219*-AQP0 constructs were co-transfected. Quantitative real-time RT-PCR, western blotting and immunofluorescence studies were performed to determine protein expression levels and sub-cellular localization, respectively.We identified a novel nonsense mutation in MIP (c.657 C>G; p.Y219*) (major intrinsic protein gene) that segregates with congenital posterior polar cataract in a Chinese family. This mutation altered a highly conserved tyrosine to a stop codon (Y219*) within AQP0.When FLAG-WT-AQP0 and FLAG-Y219*-AQP0 expression constructs were singly transfected into HEK 293T cells, mRNA expression showed no significant difference between the wild-type and the mutant, while Y219*-AQP0 protein expression was significantly lower than that of wild-type AQP0. Wild-type AQP0 predominantly localized to the plasma membrane, while the mutated protein was abundant within the cytoplasm of HEK293T cells. However, when FLAG-WT-AQP0 andMyc-MU-AQP0were co-expressed, both proteins showed high fluorescence in the cytoplasm.The novel nonsense mutation in the MIP gene (c.657 C>G) identified in a Chinese family may cause posterior polar cataracts. The dominant negative effect of the mutated protein on the wild-type protein interfered with the trafficking of wild-type protein to the cell membrane and both the mutant and wild-type protein were trapped in the cytoplasm. Consequently, both wild-type and mutant protein lost their function as a water channel on the cell membrane, and may result in a cataract phenotype. Our data also expands the spectrum of known MIP mutations

    Addressing the Relationship between Leaf Nitrogen and Carbon Isotope Discrimination from the Three Levels of Community, Population and Individual

    No full text
    The carbon, nitrogen and water cycles of terrestrial ecosystems are important biogeochemical cycles. Addressing the relationship of leaf nitrogen (N) and carbon isotope discrimination (Δ) will enhance the understanding of the links between these three cycles in plant leaves because Δ can reflect time-integrated leaf-level water-use efficiency (WUE) over the period when the leaf material is produced. Previous studies have paid considerable attention to the relationship. However, these studies have not effectively eliminated the interference of environmental factors, inter-species, and inter-individual differences in this relationship, so new research is necessary. To minimize these interferences, the present work explored the relationship at the three levels of community, population, and plant individual. Three patterns of positive, negative and no relationship were observed across communities, populations, and individuals, which is dependent on environmental conditions, species, and plant individuals. The results strongly suggested that there is no general pattern for the relationship between leaf N and Δ. Furthermore, the results indicated that there is often no coupling between leaf-level long-term WUE and leaf N in the metabolic process of carbon, N and water in leaves. The main reason for the lack of this relationship is that most plants do not invest large amounts of nitrogen into photosynthesis. In addition, the present study also observed that, for most plant species, leaf N was not related to photosynthetic rate, and that variations in photosynthetic rates are mainly driven by stomatal conductance
    corecore