465 research outputs found

    The impact of spectral basis set composition on estimated levels of cingulate glutamate and its associations with different personality traits

    Get PDF
    Background: 1H-MRS is increasingly used in basic and clinical research to explain brain function and alterations respectively. In psychosis research it is now one of the main tools to investigate imbalances in the glutamatergic system. Interestingly, however, the findings are extremely variable even within patients of similar disease states. One reason may be the variability in analysis strategies, despite suggestions for standardization. Therefore, our study aimed to investigate the extent to which the basis set configuration– which metabolites are included in the basis set used for analysis– would affect the spectral fit and estimated glutamate (Glu) concentrations in the anterior cingulate cortex (ACC), and whether any changes in levels of glutamate would be associated with psychotic-like experiences and autistic traits. Methods: To ensure comparability, we utilized five different exemplar basis sets, used in research, and two different analysis tools, r-based spant applying the ABfit method and Osprey using the LCModel. Results: Our findings revealed that the types of metabolites included in the basis set significantly affected the glutamate concentration. We observed that three basis sets led to more consistent results across different concentration types (i.e., absolute Glu in mol/kg, Glx (glutamate + glutamine), Glu/tCr), spectral fit and quality measurements. Interestingly, all three basis sets included phosphocreatine. Importantly, our findings also revealed that glutamate levels were differently associated with both schizotypal and autistic traits depending on basis set configuration and analysis tool, with the same three basis sets showing more consistent results. Conclusions: Our study highlights that scientific results may be significantly altered depending on the choices of metabolites included in the basis set, and with that emphasizes the importance of carefully selecting the configuration of the basis set to ensure accurate and consistent results, when using MR spectroscopy. Overall, our study points out the need for standardized analysis pipelines and reporting

    An analysis of MRI derived cortical complexity in premature-born adults : regional patterns, risk factors, and potential significance

    Get PDF
    Premature birth bears an increased risk for aberrant brain development concerning its structure and function. Cortical complexity (CC) expresses the fractal dimension of the brain surface and changes during neurodevelopment. We hypothesized that CC is altered after premature birth and associated with long-term cognitive development. One-hundred-and-one very premature-born adults (gestational age <32 weeks and/or birth weight <1500 ​g) and 111 term-born adults were assessed by structural MRI and cognitive testing at 26 years of age. CC was measured based on MRI by vertex-wise estimation of fractal dimension. Cognitive performance was measured based on Griffiths-Mental-Development-Scale (at 20 months) and Wechsler-Adult-Intelligence-Scales (at 26 years). In premature-born adults, CC was decreased bilaterally in large lateral temporal and medial parietal clusters. Decreased CC was associated with lower gestational age and birth weight. Furthermore, decreased CC in the medial parietal cortices was linked with reduced full-scale IQ of premature-born adults and mediated the association between cognitive development at 20 months and IQ in adulthood. Results demonstrate that CC is reduced in very premature-born adults in temporoparietal cortices, mediating the impact of prematurity on impaired cognitive development. These data indicate functionally relevant long-term alterations in the brain’s basic geometry of cortical organization in prematurity

    PAg-NeRF: Towards fast and efficient end-to-end panoptic 3D representations for agricultural robotics

    Full text link
    Precise scene understanding is key for most robot monitoring and intervention tasks in agriculture. In this work we present PAg-NeRF which is a novel NeRF-based system that enables 3D panoptic scene understanding. Our representation is trained using an image sequence with noisy robot odometry poses and automatic panoptic predictions with inconsistent IDs between frames. Despite this noisy input, our system is able to output scene geometry, photo-realistic renders and 3D consistent panoptic representations with consistent instance IDs. We evaluate this novel system in a very challenging horticultural scenario and in doing so demonstrate an end-to-end trainable system that can make use of noisy robot poses rather than precise poses that have to be pre-calculated. Compared to a baseline approach the peak signal to noise ratio is improved from 21.34dB to 23.37dB while the panoptic quality improves from 56.65% to 70.08%. Furthermore, our approach is faster and can be tuned to improve inference time by more than a factor of 2 while being memory efficient with approximately 12 times fewer parameters

    Sequelae of premature birth in young adults

    Get PDF
    Background and Purpose Qualitative studies about the abnormalities appreciated on routine magnetic resonance imaging (MRI) sequences in prematurely born adults are lacking. This article aimed at filling this knowledge gap by (1) qualitatively describing routine imaging findings in prematurely born adults, (2) evaluating measures for routine image interpretation and (3) investigating the impact of perinatal variables related to premature birth. Methods In this study two board-certified radiologists assessed T1-weighted and FLAIR-weighted images of 100 prematurely born adults born very preterm (VP <32 weeks) and/or at very low birth weight (VLBW <1500 g) and 106 controls born at full term (FT) (mean age 26.8 ± 0.7 years). The number of white matter lesions (WML) was counted according to localization. Lateral ventricle volume (LVV) was evaluated subjectively and by measurements of Evans’ index (EI) and frontal-occipital-horn ratio (FOHR). Freesurfer-based volumetry served as reference standard. Miscellaneous incidental findings were noted as free text. Results The LVV was increased in 24.7% of VP/VLBW individuals and significantly larger than in FT controls. This was best identified by measurement of FOHR (AUC = 0.928). Ventricular enlargement was predicted by low gestational age (odds ratio: 0.71, 95% CI 0.51–0.98) and presence of neonatal intracranial hemorrhage (odds ratio: 0.26, 95% CI 0.07–0.92). The numbers of deep and periventricular WML were increased while subcortical WMLs were not. Conclusion Enlargement of the LVV and deep and periventricular WMLs are typical sequelae of premature birth that can be appreciated on routine brain MRI. To increase sensitivity of abnormal LVV detection, measurement of FOHR seems feasible in clinical practice

    A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images

    Full text link
    Collateral circulation results from specialized anastomotic channels which are capable of providing oxygenated blood to regions with compromised blood flow caused by ischemic injuries. The quality of collateral circulation has been established as a key factor in determining the likelihood of a favorable clinical outcome and goes a long way to determine the choice of stroke care model - that is the decision to transport or treat eligible patients immediately. Though there exist several imaging methods and grading criteria for quantifying collateral blood flow, the actual grading is mostly done through manual inspection of the acquired images. This approach is associated with a number of challenges. First, it is time-consuming - the clinician needs to scan through several slices of images to ascertain the region of interest before deciding on what severity grade to assign to a patient. Second, there is a high tendency for bias and inconsistency in the final grade assigned to a patient depending on the experience level of the clinician. We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data. First, we formulate a region of interest detection task as a reinforcement learning problem and train a deep learning network to automatically detect the occluded region within the 3D MR perfusion volumes. Second, we extract radiomic features from the obtained region of interest through local image descriptors and denoising auto-encoders. Finally, we apply a convolutional neural network and other machine learning classifiers to the extracted radiomic features to automatically predict the collateral flow grading of the given patient volume as one of three severity classes - no flow (0), moderate flow (1), and good flow (2)..

    CSF Protein Concentration Shows No Correlation With Brain Volume Measures

    Get PDF
    Background: CSF protein concentrations vary greatly among individuals. Accounting for brain volume may lower the variance and increase the diagnostic value of CSF protein concentrations. Objective: To determine the relation between CSF protein concentrations and brain volume. Methods: Brain volumes (total intracranial, gray matter, white matter volumes) derived from brain MRI and CSF protein concentrations (total protein, albumin, albumin CSF/serum ratio) of 29 control patients and 497 patients with clinically isolated syndrome or multiple sclerosis were studied. Finding: We found significant positive correlations of CSF protein concentrations with intracranial, gray matter, and white matter volumes. None of the correlations remained significant after correction for age and sex. Conclusion: Accounting for brain volume derived from brain MRI is unlikely to improve the diagnostic value of protein concentrations in CSF

    Multiparametric Characterization of Intracranial Gliomas Using Dynamic [18F]FET-PET and Magnetic Resonance Spectroscopy.

    Get PDF
    Both static and dynamic O-(2-[18F]fluoroethyl)-l-tyrosine-(FET)-PET and 1H magnetic resonance spectroscopy (MRS) are useful tools for grading and prognostication in gliomas. However, little is known about the potential of multimodal imaging comprising both procedures. We therefore acquired NAA/Cr and Cho/Cr ratios in multi-voxel MRS as well as FET-PET parameters in 67 glioma patients and determined multiparametric parameter combinations. Using receiver operating characteristics, differentiation between low-grade and high-grade glioma was possible by static FET-PET (area under the curve (AUC) 0.86, p = 0.001), time-to-peak (TTP; AUC 0.79, p = 0.049), and using the Cho/Cr ratio (AUC 0.72, p = 0.039), while the multimodal analysis led to improved discrimination with an AUC of 0.97 (p = 0.001). In order to distinguish glioblastoma from non-glioblastoma, MRS (NAA/Cr ratio, AUC 0.66, p = 0.031), and dynamic FET-PET (AUC 0.88, p = 0.001) were superior to static FET imaging. The multimodal analysis increased the accuracy with an AUC of 0.97 (p &lt; 0.001). In the survival analysis, PET parameters, but not spectroscopy, were significantly correlated with overall survival (OS, static PET p = 0.014, TTP p = 0.012), still, the multiparametric analysis, including MRS, was also useful for the prediction of OS (p = 0.002). In conclusion, FET-PET and MRS provide complementary information to better characterize gliomas before therapy, which is particularly interesting with respect to the increasing use of hybrid PET/MRI for brain tumors

    Human subsystems of medial temporal lobes extend locally to amygdala nuclei and globally to an allostatic-interoceptive system

    Get PDF
    In mammals, the hippocampus, entorhinal, perirhinal, and parahippocampal cortices (i.e., core regions of the human medial temporal lobes, MTL) are locally interlaced with the adjacent amygdala nuclei at the structural and functional levels. At the global brain level, the human MTL has been described as part of the default mode network whereas amygdala nuclei as parts of the salience network, with both networks forming collectively a large-scale brain system supporting allostatic-interoceptive functions. We hypothesized (i) that intrinsic functional connectivity of slow activity fluctuations would reveal human MTL subsystems locally extending to the amygdala; and (ii) that these extended local subsystems would be globally embedded in large-scale brain systems supporting allostatic-interoceptive functions. From the resting-state fMRI data of three independent samples of cognitively healthy adults (one main and two replication samples: Ns = 101, 61, and 29, respectively), we analyzed the functional connectivity of fluctuating ongoing BOLD-activity within and outside the amygdala-MTL in a data-driven way using masked independent component and dual-regression analyses. We found that at the local level MTL subsystems extend to the amygdala and are functionally organized along the longitudinal amygdala-MTL axis. These subsystems were characterized by a consistent involvement of amygdala, hippocampus, and entorhinal cortex, but a variable participation of perirhinal and parahippocampal regions. At the global level, amygdala-MTL subsystems selectively connected to salience, thalamic-brainstem, and default mode networks – the major cortical and subcortical parts of the allostatic-interoceptive system. These results provide evidence for integrated amygdala-MTL subsystems in humans, which are embedded within a larger allostatic-interoceptive system

    Human subsystems of medial temporal lobes extend locally to amygdala nuclei and globally to an allostatic-interoceptive system.

    Get PDF
    In mammals, the hippocampus, entorhinal, perirhinal, and parahippocampal cortices (i.e., core regions of the human medial temporal lobes, MTL) are locally interlaced with the adjacent amygdala nuclei at the structural and functional levels. At the global brain level, the human MTL has been described as part of the default mode network and amygdala nuclei as parts of the salience network, with both networks collectively forming a large-scale brain system supporting allostatic-interoceptive functions. We hypothesized (i) that intrinsic functional connectivity of slow activity fluctuations would reveal human MTL subsystems locally extending to the amygdala; and (ii) that these extended local subsystems would be globally embedded in large-scale brain systems supporting allostatic-interoceptive functions. Capitalizing on resting-state fMRI data of three independent samples of cognitively healthy adults (one main and two replication samples: N ​= ​101, 60, and 29, respectively), we analyzed the functional connectivity of fluctuating ongoing BOLD-activity within and outside the amygdala-MTL in a data-driven way using masked independent component and dual-regression analyses. We found that at the local level, MTL subsystems extend to the amygdala and are functionally organized along the longitudinal amygdala-MTL axis. These subsystems are characterized by consistent involvement of amygdala, hippocampus, and entorhinal cortex, but variable participation of perirhinal and parahippocampal regions. At the global level, amygdala-MTL subsystems selectively connect to salience, thalamic-brainstem, and default mode networks – the major cortical and subcortical components of the allostatic-interoceptive system. These findings provide evidence for integrated amygdala-MTL subsystems in humans, which are embedded within a larger allostatic-interoceptive system
    • …
    corecore