1,978 research outputs found

    Theory for superconductivity in alkali chromium arsenides A2Cr3As3 (A=K,Rb,Cs)

    Full text link
    We propose an extended Hubbard model with three molecular orbitals on a hexagonal lattice with D3hD_{3h} symmetry to study recently discovered superconductivity in A2_2Cr3_3As3_3 (A=K,Rb,Cs). Effective pairing interactions from paramagnon fluctuations are derived within the random phase approximation, and are found to be most attractive in spin triplet channels. At small Hubbard UU and moderate Hund's coupling, the pairing arises from 3-dimensional (3D) Ξ³\gamma band and has a spatial symmetry fy(3x2βˆ’y2)f_{y(3x^{2}-y^{2})}, which gives line nodes in the gap function. At large UU, a fully gapped pp-wave state, pzz^p_{z}\hat{z} dominates at the quasi-1D Ξ±\alpha -band

    Symmetry of superconducting states with two orbitals on a tetragonal lattice: application to LaO1βˆ’xFxFeAsLaO_{1-x}F_{x}FeAs

    Full text link
    We use group theory to classify the superconducting states of systems with two orbitals on a tetragonal lattice. The orbital part of the superconducting gap function can be either symmetric or anti-symmetric. For the orbital symmetric state, the parity is even for spin singlet and odd for spin triplet; for the orbital anti-symmetric state, the parity is odd for spin singlet and even for spin triplet. The gap basis functions are obtained with the use of the group chain scheme by taking into account the spin-orbit coupling. In the weak pairing limit, the orbital anti-symmetric state is only stable for the degenerate orbitals. Possible application to iron-based superconductivity is discussed.Comment: published versio

    Giant mesoscopic spin Hall effect on surface of topological insulator

    Get PDF
    We study mesoscopic spin Hall effect on the surface of topological insulator with a step-function potential. The giant spin polarization induced by a transverse electric current is derived analytically by using McMillan method in the ballistic transport limit, which oscillates across the potential boundary with no confinement from the potential barrier due to the Klein paradox, and should be observable in spin resolved scanning tunneling microscope.Comment: 5 pages, 3 figure
    • …
    corecore