197 research outputs found
QuickSNP: an automated web server for selection of tagSNPs
Although large-scale genetic association studies involving hundreds to thousands of SNPs have become feasible, the associated cost is substantial. Even with the increased efficiency introduced by the use of tagSNPs, researchers are often seeking ways to maximize resource utilization given a set of SNP-based gene-mapping goals. We have developed a web server named QuickSNP in order to provide cost-effective selection of SNPs, and to fill in some of the gaps in existing SNP selection tools. One useful feature of QuickSNP is the option to select only gene-centric SNPs from a chromosomal region in an automated fashion. Other useful features include automated selection of coding non-synonymous SNPs, SNP filtering based on inter-SNP distances and information regarding the availability of genotyping assays for SNPs and whether they are present on whole genome chips. The program produces user-friendly summary tables and results, and a link to a UCSC Genome Browser track illustrating the position of the selected tagSNPs in relation to genes and other genomic features. We hope the unique combination of features of this server will be useful for researchers aiming to select markers for their genotyping studies. The server is freely available and can be accessed at the URL http://bioinformoodics.jhmi.edu/quickSNP.pl
Genome-wide parametric linkage analyses of 644 bipolar pedigrees suggest susceptibility loci at chromosomes 16 and 20
OBJECTIVE: Our aim is to map chromosomal regions that harbor loci that increase susceptibility to bipolar disorder.
METHODS: We analyzed 644 bipolar families ascertained by the National Institute of Mental Health Human Genetics Initiative for bipolar disorder. The families have been genotyped with microsatellite loci spaced every approximately 10 cM or less across the genome. Earlier analyses of these pedigrees have been limited to nonparametric (model-free) methods and thus, information from unaffected subjects with genotypes was not considered. In this study, we used parametric analyses assuming dominant and recessive transmission and specifying a maximum penetrance of 70%, so that information from unaffecteds could be weighed in the linkage analyses. As in previous linkage analyses of these pedigrees, we analyzed three diagnostic categories: model 1 included only bipolar I and schizoaffective, bipolar cases (1565 patients of whom approximately 4% were schizoaffective, bipolar); model 2 included all individuals in model 1 plus bipolar II patients (1764 total individuals); and model 3 included all individuals in model 2 with the addition of patients with recurrent major depressive disorder (2046 total persons).
RESULTS: Assuming dominant inheritance the highest genome-wide pair-wise logarithm of the odds (LOD) score was 3.2 with D16S749 using model 2 patients. Multipoint analyses of this region yielded a maximum LOD score of 4.91. Under recessive transmission a number of chromosome 20 markers were positive and multipoint analyses of the area gave a maximum LOD of 3.0 with model 2 cases.
CONCLUSION: The chromosome 16p and 20 regions have been implicated by some studies and the data reported herein provide additional suggestive evidence of bipolar susceptibility genes in these regions
Genome-Wide Significant Risk Loci for Mood Disorders in the Old Order Amish Founder Population
Genome-wide association studies (GWAS) of mood disorders in large case-control cohorts have identified numerous risk loci, yet pathophysiological mechanisms remain elusive, primarily due to the very small effects of common variants. We sought to discover risk variants with larger effects by conducting a genome-wide association study of mood disorders in a founder population, the Old Order Amish (OOA, n = 1,672). Our analysis revealed four genome-wide significant risk loci, all of which were associated with \u3e2-fold relative risk. Quantitative behavioral and neurocognitive assessments (n = 314) revealed effects of risk variants on sub-clinical depressive symptoms and information processing speed. Network analysis suggested that OOA-specific risk loci harbor novel risk-associated genes that interact with known neuropsychiatry-associated genes via gene interaction networks. Annotation of the variants at these risk loci revealed population-enriched, non-synonymous variants in two genes encoding neurodevelopmental transcription factors, CUX1 and CNOT1. Our findings provide insight into the genetic architecture of mood disorders and a substrate for mechanistic and clinical studies
Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder
Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture
Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder.
Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models, such as reduced glial cell number in the prefrontal cortex of patients, upregulated activities of the protein kinase A and C pathways and changes in neurotransmission. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca2+ imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment
National Network of Depression Centers\u27 Recommendations on Harmonizing Clinical Documentation of Electroconvulsive Therapy
Electroconvulsive therapy (ECT) is a highly therapeutic and cost-effective treatment for severe and/or treatment-resistant major depression. However, because of the varied clinical practices, there is a great deal of heterogeneity in how ECT is delivered and documented. This represents both an opportunity to study how differences in implementation influence clinical outcomes and a challenge for carrying out coordinated quality improvement and research efforts across multiple ECT centers. The National Network of Depression Centers, a consortium of 26+ US academic medical centers of excellence providing care for patients with mood disorders, formed a task group with the goals of promoting best clinical practices for the delivery of ECT and to facilitate large-scale, multisite quality improvement and research to advance more effective and safe use of this treatment modality. The National Network of Depression Centers Task Group on ECT set out to define best practices for harmonizing the clinical documentation of ECT across treatment centers to promote clinical interoperability and facilitate a nationwide collaboration that would enable multisite quality improvement and longitudinal research in real-world settings. This article reports on the work of this effort. It focuses on the use of ECT for major depressive disorder, which accounts for the majority of ECT referrals in most countries. However, most of the recommendations on clinical documentation proposed herein will be applicable to the use of ECT for any of its indications
Self-assembly of highly symmetrical, ultrasmall inorganic cages directed by surfactant micelles
Nanometre-sized objects with highly symmetrical, cage-like polyhedral shapes, often with icosahedral symmetry, have recently been assembled from DNA(1-3), RNA(4) or proteins(5,6) for applications in biology and medicine. These achievements relied on advances in the development of programmable self-assembling biological materials(7-10), and on rapidly developing techniques for generating three-dimensional (3D) reconstructions from cryo-electron microscopy images of single particles, which provide high-resolution structural characterization of biological complexes(11-13). Such single-particle 3D reconstruction approaches have not yet been successfully applied to the identification of synthetic inorganic nanomaterials with highly symmetrical cage-like shapes. Here, however, using a combination of cryo-electron microscopy and single-particle 3D reconstruction, we suggest the existence of isolated ultrasmall (less than 10 nm) silica cages ('silicages') with dodecahedral structure. We propose that such highly symmetrical, self-assembled cages form through the arrangement of primary silica clusters in aqueous solutions on the surface of oppositely charged surfactant micelles. This discovery paves the way for nanoscale cages made from silica and other inorganic materials to be used as building blocks for a wide range of advanced functional-materials applications
THE ANALYSIS OF PUNCTUATION USE IN UNPUNCTUATED PASSAGES: A DISCOURSE-GRAPHOLOGY PERSPECTIVE
Diski Eginda Rismianti. 14111310149. The Analysis of Punctuation Use in Unpunctuated Passages: A Discourse-Graphology Perspective. Punctuation is the basic element in writing which is important to clarify meaning. Without punctuation or ignoring the rule of punctuation in a passage, the writing will be ambiguous. The writing course in IAIN Syekh Nurjati Cirebon is studied by English Student in 5 levels. Based the phenomenon, this research aims to find out the students’ error in the use of punctuation and how does the use relate to the meaning of restrictive and nonrestrictive elements. The analyses process in this research is constructed based on the theory from Marcella Frank. This research used qualitative method in analyzing data where the data contains the two original passages which is taken from the book of academic writing and the three participants’ work which are got by examining the passages as a main data source to be analyzed in this research. Those passages are changed be unpunctuated passages then examined to the 3 EFL learner which comes from the high score, medium score, and low score of writing. The result of this analysis shows that there are fifteen punctuation marks which are used in the two passages; they are capitalization, periods, commas, semicolons, colons, quotation marks, parentheses, apostrophes, hyphen, en dashes, ellipses, percent, underscore, at sign, and citation. FP has highest number of error in Capitalization with 100%. SP has big problem in commas exactly in the nineteenth rule with 90% and TP are wrong in parentheses. For restrictive and nonrestrictive elements, restrictive elements has higher number than nonrestrictive elements, except is in appositive. The numbers of the elements are same with the three participants. The differences come from the number of appositive which passages has higher number of nonrestrictive appositive than restrictive appositives. The results show that punctuation in unpunctuated passages used the rule from APA (American Psychological Association). The effects of the use of punctuation are in the number of sentences and clauses, types of phrases, and restrictive and nonrestrictive elements. For the students’ error, there are some sentences in FP and TP which only contain phrase. Key words: Punctuation Marks, Restrictive and Nonrestrictive Clause, Restrictive and Nonrestrictive Phrase, Restrictive and Nonrestrictive Appositives
Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia
We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10-9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD's polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology
- …