584 research outputs found

    Protezione del traffico aereo civile dalla minaccia cibernetica

    Get PDF
    L’impiego dell’Ict ha caratterizzato in maniera crescente l’evoluzione dell’aviazione civile. La digitalizzazione e la messa in rete di strumenti tecnologici complessi implicano delle problematiche rilevanti per la sicurezza cibernetica del settore. Il Government Accountability Office ha recentemente sottolineato come alcune vulnerabilità riscontrate nei sistemi statunitensi di gestione e controllo del traffico aereo civile possano, se sfruttate, avere serie conseguenze per la sicurezza. Da tali considerazioni scaturiscono una serie di domande sul caso italiano: su quali tecnologie si basano i nostri sistemi di gestione e controllo del traffico aereo civile? Qual è il loro livello di vulnerabilità? Quali attori possono minacciare tali sistemi? E questi attori hanno le capacità tecnologiche per condurre attacchi cibernetici tali da compromettere queste infrastrutture critiche? Le limitate risorse tecniche e i diversi obiettivi degli attori non statali esaminati in questo studio, le misure messe in campo da Enav e la funzione di prevenzione delle autorità italiane consentono di affermare che il livello di rischio a cui sono esposti nel breve periodo i sistemi Atc italiani è relativamente basso. È tuttavia necessario sottolineare la necessità di mantenere un livello di attenzione alto.The use of ICT in civil aviation has increased exponentially in the last years. Digitalisation and the technological tools and systems often connected to the internet constitute serious risks for aviation cyber security. The Government Accountability Office (GAO) has recently stated that air traffic management and control (ATM/ATC) vulnerabilities could be used to undermine national security. Against this backdrop, several related questions arise: what technologies do air traffic management and control systems rely on? Are these systems vulnerable? Which actors could pose a threat to these systems? Do they have the technological skills to conduct attacks that could compromise them? The low technical skills of the non-state actors analysed in this research, the cyber security countermeasures adopted by ENAV and the preventive activities conducted by Italian authorities make the risk for Italian ATM/ATC systems low. However, it is necessary to keep a high level of attention and awareness on possible future developments of the cyber threat

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Degree of tapering of xylem conduits in stems and roots of small Pinus cembra and Larix decidua trees

    No full text
    Xylem conduits increase in size from the apex downwards. While conduit tapering in the stem has often been reported to converge towards a common pattern among all plants, information on conduit tapering in small plants and roots is extremely scarce. We selected 10 small trees (height < 3 m) of Pinus cembra L. and Larix decidua Miller along an altitudinal gradient and measured diameter and conduit dimensions along stems and roots in the last annual ring. Sections of 10 mm were cut from wooden disks taken at different heights in the stem and in the roots and then stained with safranine. Slides were observed under a microscope, the lumen areas of conduits were measured and mean hydraulic diameters (D-h) calculated. Dh increased from stem tip (Dh at 1 cm from the apex averaged 10.75 mu m; s = 2.33) to base (D-h from 20.70 to 30.54 mu m), following a power trajectory (i. e., D-h = a.L-b, with L being the distance from the tip). Such degrees of conduit tapering may have a considerable effect in minimizing the hydraulic constraints. Despite trees at the tree-line being older and smaller than in the subalpine forest (age: 28-70 years at the treeline; 18-39 years in the subalpine forest), conduit tapering did not differ significantly between sites, suggesting that tree height is the main factor controlling the basipetal increase in conduit lumens. In the roots, the increase in conduit dimensions continued towards their tips, even more steeply than in the stem. The widest conduits were measured around the root tips (around 40 mm). Conduit tapering resulted as a stable structural feature in small plants as well as in tall trees

    Feline Susceptibility to Leptospirosis and Presence of Immunosuppressive Co-Morbidities: First European Report of <i>L. interrogans</i> Serogroup Australis Sequence Type 24 in a Cat and Survey of <i>Leptospira</i> Exposure in Outdoor Cats

    No full text
    Leptospirosis is one of the most widespread zoonotic diseases and can infect both humans and animals worldwide. The role of the cat as a susceptible host and potential environmental reservoir of Leptospira is still not well understood, due to the lack of obvious clinical signs associated with Leptospira spp. infection in this species. This study aims to describe the first European detection of Leptospira interrogans serogroup Australis ST 24 in a young outdoor cat with a severe comorbidity (feline panleukopenia virus). In addition, the results of a preliminary study conducted in 2014–2016 are presented (RC IZSVE 16/12), which reports an investigation of Leptospira exposure of outdoor cats in Northeast Italy by means of serological investigation and molecular evaluation of urine. The animals included in the survey are part of samples collected during active and passive surveillance (diagnostic samples). The study reported a seroprevalence of 10.5% among outdoor cats and the serogroups identified were Grippotyphosa, Icterohaemorrhagiae, Bratislava, Canicola and Ballum. Symptomatic cats reported high MAT titres (ranging from 1:800 to 1:1600) towards antigens belonging to the serovars Grippotyphosa (1:800), Bratislava (1:1600), Icterohaemorrhagiae (1:200) and Copenhageni (1:200–1:800). In one subject, urine tested positive for Leptospira PCR. Cats with high antibody titres for Leptospira and/or positivity on molecular test suffered from immunosuppressive comorbidities (feline immunodeficiency virus and feline leukaemia virus; feline herpesvirus and lymphoma; hyperthyroidism). The overall prevalence of serum antibodies against Leptospira found in free-ranging cats (10.53%, 95% CI: 4.35–16.70%) and the identification of L. interrogans ST 24 in a young cat with immunosuppressive disease (feline panleukopenia virus) suggest the possibility of natural resistance to clinical leptospirosis in healthy cats. In a One Health perspective, further studies are needed to better define the pathogenesis of leptospirosis in cats and their epidemiological role as environmental sentinels or possible carriers of pathogenic Leptospira
    corecore