3,049 research outputs found

    Quantum Many-Body Dynamics of Dark Solitons in Optical Lattices

    Full text link
    We present a fully quantum many-body treatment of dark solitons formed by ultracold bosonic atoms in one-dimensional optical lattices. Using time-evolving block decimation to simulate the single-band Bose-Hubbard Hamiltonian, we consider the quantum dynamics of density and phase engineered dark solitons as well as the quantum evolution of mean-field dark solitons injected into the quantum model. The former approach directly models how one may create quantum entangled dark solitons in experiment. While we have already presented results regarding the latter approach elsewhere [Phys. Rev. Lett. {\bf 103}, 140403 (2009)], we expand upon those results in this work. In both cases, quantum fluctuations cause the dark soliton to fill in and may induce an inelasticity in soliton-soliton collisions. Comparisons are made to the Bogoliubov theory which predicts depletion into an anomalous mode that fills in the soliton. Our many-body treatment allows us to go beyond the Bogoliubov approximation and calculate explicitly the dynamics of the system's natural orbitals.Comment: 14 pages, 11 figures -- v3 has only minor changes from v2 -- this is the print versio

    Relating the description of gluon production in pA collisions and parton energy loss in AA collisions

    Full text link
    We calculate the classical gluon field of a fast projectile passing through a dense medium. We show that this allows us to calculate both the initial state gluon production in proton-nucleus collisions and the final state gluon radiation off a hard parton produced in nucleus-nucleus collisions. This unified description of these two phenomena makes the relation between the saturation scale QsQ_s and the transport coefficient q^\hat q more transparent. Also, we discuss the validity of the eikonal approximation for gluon propagation inside the nucleus in proton-nucleus collisions at RHIC energy.Comment: 18 pages, 3 figure

    Collapse and stable self-trapping for Bose-Einstein condensates with 1/r^b type attractive interatomic interaction potential

    Full text link
    We consider dynamics of Bose-Einstein condensates with long-range attractive interaction proportional to 1/rb1/r^b and arbitrary angular dependence. It is shown exactly that collapse of Bose-Einstein condensate without contact interactions is possible only for b≥2b\ge 2. Case b=2b=2 is critical and requires number of particles to exceed critical value to allow collapse. Critical collapse in that case is strong one trapping into collapsing region a finite number of particles. Case b>2b>2 is supercritical with expected weak collapse which traps rapidly decreasing number of particles during approach to collapse. For b<2b<2 singularity at r=0r=0 is not strong enough to allow collapse but attractive 1/rb1/r^b interaction admits stable self-trapping even in absence of external trapping potential

    An all-optical event horizon in an optical analogue of a Laval nozzle

    Full text link
    Exploiting the fact that light propagation in defocusing nonlinear media can mimic the transonic flow of an equivalent fluid, we demonstrate experimentally the formation of an all-optical event horizon in a waveguide structure akin to a hydrodynamic Laval nozzle. The analogue event horizon, which forms at the nozzle throat is suggested as a novel platform for analogous gravity experiments

    On integration of some classes of (n+1)(n+1) dimensional nonlinear Partial Differential Equations

    Full text link
    The paper represents the method for construction of the families of particular solutions to some new classes of (n+1)(n+1) dimensional nonlinear Partial Differential Equations (PDE). Method is based on the specific link between algebraic matrix equations and PDE. Admittable solutions depend on arbitrary functions of nn variables.Comment: 6 page

    Weak Wave Turbulence Scaling Theory for Diffusion and Relative Diffusion in Turbulent Surface Waves

    Get PDF
    We examine the applicability of the weak wave turbulence theory in explaining experimental scaling results obtained for the diffusion and relative diffusion of particles moving on turbulent surface waves. For capillary waves our theoretical results are shown to be in good agreement with experimental results, where a distinct crossover in diffusive behavior is observed at the driving frequency. For gravity waves our results are discussed in the light of ocean wave studies.Comment: 5 pages; for related work visit http://www.imedea.uib.es/~victo

    Cosmology and the Korteweg-de Vries Equation

    Full text link
    The Korteweg-de Vries (KdV) equation is a non-linear wave equation that has played a fundamental role in diverse branches of mathematical and theoretical physics. In the present paper, we consider its significance to cosmology. It is found that the KdV equation arises in a number of important scenarios, including inflationary cosmology, the cyclic universe, loop quantum cosmology and braneworld models. Analogies can be drawn between cosmic dynamics and the propagation of the solitonic wave solution to the equation, whereby quantities such as the speed and amplitude profile of the wave can be identified with cosmological parameters such as the spectral index of the density perturbation spectrum and the energy density of the universe. The unique mathematical properties of the Schwarzian derivative operator are important to the analysis. A connection with dark solitons in Bose-Einstein condensates is briefly discussed.Comment: 7 pages; References adde

    Collinear Photon Emission from the Quark-Gluon Plasma: The Light-Cone Path Integral Formulation

    Get PDF
    We give a simple physical derivation of the photon emission rate from the weakly coupled quark-gluon plasma connected with the collinear processes q→γqq\to \gamma q and qqˉ→γq\bar{q}\to \gamma. The analysis is based on the light-cone path integral approach to the induced radiation. Our results agree with that by Arnold, Moore and Yaffe obtained using the real-time thermal perturbation theory. It is demonstrated that the solution of the AMY integral equation is nothing but the time-integrated Green's function of the light-cone path integral approach written in the momentum representation.Comment: 12 pages, 2 figure

    Stability of Bose-Einstein Condensates Confined in Traps

    Full text link
    Bose-Einstein condensation has been realized in dilute atomic vapors. This achievement has generated immerse interest in this field. Presented is a review of recent theoretical research into the properties of trapped dilute-gas Bose-Einstein condensates. Among them, stability of Bose-Einstein condensates confined in traps is mainly discussed. Static properties of the ground state are investigated by use of the variational method. The anlysis is extended to the stability of two-component condensates. Time-development of the condensate is well-described by the Gross-Pitaevskii equation which is known in nonlinear physics as the nonlinear Schr\"odinger equation. For the case that the inter-atomic potential is effectively attractive, a singularity of the solution emerges in a finite time. This phenomenon which we call collapse explains the upper bound for the number of atoms in such condensates under traps.Comment: 74 pages with 12 figures, submitted to the review section of International Journal of Modern Physics

    Analytic-bilinear approach to integrable hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies

    Full text link
    Analytic-bilinear approach for construction and study of integrable hierarchies is discussed. Generalized multicomponent KP and 2D Toda lattice hierarchies are considered. This approach allows to represent generalized hierarchies of integrable equations in a condensed form of finite functional equations. Generalized hierarchy incorporates basic hierarchy, modified hierarchy, singularity manifold equation hierarchy and corresponding linear problems. Different levels of generalized hierarchy are connected via invariants of Combescure symmetry transformation. Resolution of functional equations also leads to the Ï„\tau -function and addition formulae to it.Comment: 43 pages, Late
    • …
    corecore