2 research outputs found

    Compressive Behavior of Frame-Stiffened Composite Panels

    Get PDF
    New technologies are being developed under NASA's Environmentally Responsible Aviation (ERA) Program aimed at reducing fuel burn and emissions in large commercial aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system is employed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners and producing a more damage tolerant design. In addition, by adding unidirectional carbon rods to the top of stiffeners and minimizing the interference between the sandwich frames and the rod-stiffened stringers, the panel becomes more structurally efficient. This document describes the results of experimentation on a PRSEUS panel in which the frames are loaded in unidirectional compression beyond the local buckling of the skin of a Hybrid Wing Body (HWB) aircraft. A comparison with analytical predictions and the relationship between these test results and the global aircraft design is presented

    PRSEUS Acoustic Panel Fabrication

    Get PDF
    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program
    corecore