44 research outputs found

    Identification of the matricellular protein Fibulin-5 as a target molecule of glucokinase-mediated calcineurin/NFAT signaling in pancreatic islets

    Get PDF
    Glucokinase-mediated glucose signaling induces insulin secretion, proliferation, and apoptosis in pancreatic β-cells. However, the precise molecular mechanisms underlying these processes are not clearly understood. Here, we demonstrated that glucokinase activation using a glucokinase activator (GKA) significantly upregulated the expression of Fibulin-5 (Fbln5), a matricellular protein involved in matrix-cell signaling, in isolated mouse islets. The islet Fbln5 expression was induced by ambient glucose in a time- and dose-dependent manner and further enhanced by high-fat diet or the deletion of insulin receptor substrate 2 (IRS-2), whereas the GKA-induced increase in Fbln5 expression was diminished in Irs-2-deficient islets. GKA-induced Fbln5 upregulation in the islets was blunted by a glucokinase inhibitor, KATP channel opener, Ca2+ channel blocker and calcineurin inhibitor, while it was augmented by harmine, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) 1 A inhibitor. Although deletion of Fbln5 in mice had no significant effects on the glucose tolerance or β-cell functions, adenovirus-mediated Fbln5 overexpression increased glucose-stimulated insulin secretion in INS-1 rat insulinoma cells. Since the islet Fbln5 expression is regulated through a glucokinase/KATP channel/calcineurin/nuclear factor of activated T cells (NFAT) pathway crucial for the maintenance of β-cell functions, further investigation of Fbln5 functions in the islets is warranted

    DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid

    Get PDF
    Additional file 3: Figure S2. Liver and epididymal fat weights in db/+ mice and db/db mice. The experiments were performed in db/+ or db/db mice fed an SL diet, SO diet, SL containing DPP-4 inhibitor (0.4% des-fluoro-sitagliptin) diet, or SO containing DPP-4 inhibitor diet for 8 weeks. (left) Liver weights as a proportion of body weight (n = 5). (right) Epididymal fat weights as a proportion of body weight (n = 5)

    Epigenetic-scale comparison of human iPSCs generated by retrovirus, Sendai virus or episomal vectors

    Get PDF
    Human induced pluripotent stem cells (iPSCs) are established by introducing several reprogramming factors, such as OCT3/4, SOX2, KLF4, c-MYC. Because of their pluripotency and immortality, iPSCs are considered to be a powerful tool for regenerative medicine. To date, iPSCs have been established all over the world by various gene delivery methods. All methods induced high-quality iPSCs, but epigenetic analysis of abnormalities derived from differences in the gene delivery methods has not yet been performed. Here, we generated genetically matched human iPSCs from menstrual blood cells by using three kinds of vectors, i.e., retrovirus, Sendai virus, and episomal vectors, and compared genome-wide DNA methylation profiles among them. Although comparison of aberrant methylation revealed that iPSCs generated by Sendai virus vector have lowest number of aberrant methylation sites among the three vectors, the iPSCs generated by non-integrating methods did not show vector-specific aberrant methylation. However, the differences between the iPSC lines were determined to be the number of random aberrant hypermethylated regions compared with embryonic stem cells. These random aberrant hypermethylations might be a cause of the differences in the properties of each of the iPSC lines

    Defining Hypo-Methylated Regions of Stem Cell-Specific Promoters in Human iPS Cells Derived from Extra-Embryonic Amnions and Lung Fibroblasts

    Get PDF
    BACKGROUND: Human induced pluripotent stem (iPS) cells are currently used as powerful resources in regenerative medicine. During very early developmental stages, DNA methylation decreases to an overall low level at the blastocyst stage, from which embryonic stem cells are derived. Therefore, pluripotent stem cells, such as ES and iPS cells, are considered to have hypo-methylated status compared to differentiated cells. However, epigenetic mechanisms of "stemness" remain unknown in iPS cells derived from extra-embryonic and embryonic cells. METHODOLOGY/PRINCIPAL FINDINGS: We examined genome-wide DNA methylation (24,949 CpG sites covering 1,3862 genes, mostly selected from promoter regions) with six human iPS cell lines derived from human amniotic cells and fetal lung fibroblasts as well as two human ES cell lines, and eight human differentiated cell lines using Illumina's Infinium HumanMethylation27. A considerable fraction (807 sites) exhibited a distinct difference in the methylation level between the iPS/ES cells and differentiated cells, with 87.6% hyper-methylation seen in iPS/ES cells. However, a limited fraction of CpG sites with hypo-methylation was found in promoters of genes encoding transcription factors. Thus, a group of genes becomes active through a decrease of methylation in their promoters. Twenty-three genes including SOX15, SALL4, TDGF1, PPP1R16B and SOX10 as well as POU5F1 were defined as genes with hypo-methylated SS-DMR (Stem cell-Specific Differentially Methylated Region) and highly expression in iPS/ES cells. CONCLUSIONS/SIGNIFICANCE: We show that DNA methylation profile of human amniotic iPS cells as well as fibroblast iPS cells, and defined the SS-DMRs. Knowledge of epigenetic information across iPS cells derived from different cell types can be used as a signature for "stemness" and may allow us to screen for optimum iPS/ES cells and to validate and monitor iPS/ES cell derivatives for human therapeutic applications

    Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation

    Get PDF
    Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5-ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5-ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5-ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    Get PDF
    We present data-analysis schemes and results of observations with the TAMA300 gravitational-wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp-wave analysis, because precise waveform templates are not available. We used an excess-power filter for the extraction of gravitational-wave candidates, and developed two methods for the reduction of fake events caused by non-stationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. The resultant event candidates were interpreted from an astronomical viewpoint. We set an upper limit of 2.2x10^3 events/sec on the burst gravitational-wave event rate in our Galaxy with a confidence level of 90%. This work sets a milestone and prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector

    DNA Methylation Dynamics in Human Induced Pluripotent Stem Cells over Time

    Get PDF
    Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs). Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell) and five human embryonic stem cell (ESC) lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the “convergence” of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs
    corecore