134 research outputs found

    Resummation in nonlinear equation for high energy factorizable gluon density and its extension to include coherence

    Get PDF
    Motivated by forthcoming p-Pb experiments at Large Hadron Collider which require both knowledge of gluon densities accounting for saturation and for processes at a wide range of ptp_t we study basic momentum space evolution equations of high energy QCD factorization. Solutions of those equations might be used to form a set of gluon densities to calculate observables in generalized high energy factorization. Moreover in order to provide a framework for predictions for exclusive final states in p-Pb scattering with high ptp_t we rewrite the equation for the high energy factorizable gluon density in a resummed form, similarly to what has been done in \cite{Kutak:2011fu} for the BK equation. The resummed equation is then extended to account for colour coherence. This introduces an external scale to the evolution of the gluon density, and therefore makes it applicable in studies of final states.Comment: 14 pages, appendix added, accepted for publication in JHE

    Long-Range Rapidity Correlations in Heavy Ion Collisions at Strong Coupling from AdS/CFT

    Full text link
    We use AdS/CFT correspondence to study two-particle correlations in heavy ion collisions at strong coupling. Modeling the colliding heavy ions by shock waves on the gravity side, we observe that at early times after the collision there are long-range rapidity correlations present in the two-point functions for the glueball and the energy-momentum tensor operators. We estimate rapidity correlations at later times by assuming that the evolution of the system is governed by ideal Bjorken hydrodynamics, and find that glueball correlations in this state are suppressed at large rapidity intervals, suggesting that late-time medium dynamics can not "wash out" the long-range rapidity correlations that were formed at early times. These results may provide an insight on the nature of the "ridge" correlations observed in heavy ion collision experiments at RHIC and LHC, and in proton-proton collisions at LHC.Comment: 32 pages, 2 figures; v2: typos corrected, references adde

    Jet quenching in shock waves

    Full text link
    We study the propagation of an ultrarelativistic light quark jet inside a shock wave using the holographic principle. The maximum stopping distance and its dependency on the energy of the jet is obtained

    Non-perturbative computation of double inclusive gluon production in the Glasma

    Full text link
    The near-side ridge observed in A+A collisions at RHIC has been described as arising from the radial flow of Glasma flux tubes formed at very early times in the collisions. We investigate the viability of this scenario by performing a non-perturbative numerical computation of double inclusive gluon production in the Glasma. Our results support the conjecture that the range of transverse color screening of correlations determining the size of the flux tubes is a semi-hard scale, albeit with non-trivial structure. We discuss our results in the context of ridge correlations in the RHIC heavy ion experiments.Comment: 25 pages, 11 figures, uses JHEP3.cls V2: small clarifications, published in JHE

    Extracting the Distribution Amplitudes of the rho meson from the Color Glass Condensate

    Full text link
    We extract the leading twist-2 and subleading twist-3 Distribution Amplitudes (DAs) of the rho meson using the HERA data on diffractive rho photoproduction. We do so using several Colour Glass Condensate (CGC) inspired and a Regge inspired dipole models. We find that our extracted twist-2 DA is not much model dependent and is consistent with QCD Sum Rules and lattice predictions. The extracted twist-3 DA is more model dependent but is still consistent with the Sum Rules prediction.Comment: 21 pages, 10 figures, 3 tables. Section 6 revised, figures 8 and 9 and table 3 updated. Conclusions essentially unchange

    JIMWLK evolution in the Gaussian approximation

    Get PDF
    We demonstrate that the Balitsky-JIMWLK equations describing the high-energy evolution of the n-point functions of the Wilson lines (the QCD scattering amplitudes in the eikonal approximation) admit a controlled mean field approximation of the Gaussian type, for any value of the number of colors Nc. This approximation is strictly correct in the weak scattering regime at relatively large transverse momenta, where it reproduces the BFKL dynamics, and in the strong scattering regime deeply at saturation, where it properly describes the evolution of the scattering amplitudes towards the respective black disk limits. The approximation scheme is fully specified by giving the 2-point function (the S-matrix for a color dipole), which in turn can be related to the solution to the Balitsky-Kovchegov equation, including at finite Nc. Any higher n-point function with n greater than or equal to 4 can be computed in terms of the dipole S-matrix by solving a closed system of evolution equations (a simplified version of the respective Balitsky-JIMWLK equations) which are local in the transverse coordinates. For simple configurations of the projectile in the transverse plane, our new results for the 4-point and the 6-point functions coincide with the high-energy extrapolations of the respective results in the McLerran-Venugopalan model. One cornerstone of our construction is a symmetry property of the JIMWLK evolution, that we notice here for the first time: the fact that, with increasing energy, a hadron is expanding its longitudinal support symmetrically around the light-cone. This corresponds to invariance under time reversal for the scattering amplitudes.Comment: v2: 45 pages, 4 figures, various corrections, section 4.4 updated, to appear in JHE

    Next-to-leading and resummed BFKL evolution with saturation boundary

    Get PDF
    We investigate the effects of the saturation boundary on small-x evolution at the next-to-leading order accuracy and beyond. We demonstrate that the instabilities of the next-to-leading order BFKL evolution are not cured by the presence of the nonlinear saturation effects, and a resummation of the higher order corrections is therefore needed for the nonlinear evolution. The renormalization group improved resummed equation in the presence of the saturation boundary is investigated, and the corresponding saturation scale is extracted. A significant reduction of the saturation scale is found, and we observe that the onset of the saturation corrections is delayed to higher rapidities. This seems to be related to the characteristic feature of the resummed splitting function which at moderately small values of x possesses a minimum.Comment: 34 page

    Nonlinear equation for coherent gluon emission

    Get PDF
    Motivated by the regime of QCD explored nowadays at LHC, where both the total energy of collision and momenta transfers are high, we investigate evolution equations of high energy factorization. In order to study such effects like parton saturation in final states one is inevitably led to investigate how to combine physics of the BK and CCFM evolution equations. In this paper we obtain a new exclusive form of the BK equation which suggests a possible form of the nonlinear extension of the CCFM equation
    corecore