7 research outputs found

    Investigating the Impacts of Urban Built Environment on Travel Energy Consumption: A Case Study of Ningbo, China

    Get PDF
    The built environment of cities has increasingly affected the travel mode of residents and led to changes in energy consumption, which is crucial to maintaining urban sustainability. Ningbo is a typical representative of urbanization on the east coast of China, and its energy consumption is in a period of rapid growth. Therefore, using the survey data of 22,112 traffic trip samples from nine streets in Ningbo, this paper establishes a regression analysis model, systematically analyzes the relationship between the built environment and domestic energy consumption from multiple dimensions, and reveals the impact mechanism of the built environment on domestic energy consumption. We find that (1) social and economic conditions are the main factors affecting traffic energy consumption. (2) The population density has a significant negative correlation effect on the energy consumption of transportation trips. When the population density increases by 1%, the energy consumption of total transportation trips, commuting trips, high-energy-consumption trips, and low-energy-consumption trips decreases by 0.094%, 0.115%, 0.273%, and 0.124%, respectively. (3) When the degree of mixed use of land increases by one percentage point, the energy consumption of total transportation trips, commuting trips, high-energy-consumption trips, and low-energy-consumption trips decreases by 0.415%, 0.421%, 2.574%, and 1.197%, respectively. (4) The density of road intersections has a significant negative correlation effect on the energy consumption of traffic trips. (5) The impact of the built environment on the energy consumption of transportation trips is greater than that of residential buildings

    Fabrication of YSZ coatings on nickel-based alloys by anodic electrophoretic deposition

    No full text
    In the paper, YSZ coatings were prepared on nickel-based alloy substrates by anodic electrophoretic deposition. The YSZ suspension solution was obtained under stirring and ultrasonic treatment, in which the anhydrous ethanol and acetylacetone were used as the dispersion medium and ammonium polyacrylate was used as the dispersant of the suspension. The effects of different deposition voltage and deposition time on YSZ coating were investigated. Meantime, the microstructure of the coating surface was observed by metallographic microscope. It was found that the high-quality YSZ coating could be obtained by deposition at 60 V for 2–3 min. Finally, the effect of sintering temperature on coating quality was investigated by X-ray diffractometer and scanning electron microscopy. The results showed that the YSZ coating bonded closely with the substrate after sintering at 1200 °C, and the porosity of the YSZ coating increased after sintering

    Investigating the Impacts of Urban Built Environment on Travel Energy Consumption: A Case Study of Ningbo, China

    Get PDF
    The built environment of cities has increasingly affected the travel mode of residents and led to changes in energy consumption, which is crucial to maintaining urban sustainability. Ningbo is a typical representative of urbanization on the east coast of China, and its energy consumption is in a period of rapid growth. Therefore, using the survey data of 22,112 traffic trip samples from nine streets in Ningbo, this paper establishes a regression analysis model, systematically analyzes the relationship between the built environment and domestic energy consumption from multiple dimensions, and reveals the impact mechanism of the built environment on domestic energy consumption. We find that (1) social and economic conditions are the main factors affecting traffic energy consumption. (2) The population density has a significant negative correlation effect on the energy consumption of transportation trips. When the population density increases by 1%, the energy consumption of total transportation trips, commuting trips, high-energy-consumption trips, and low-energy-consumption trips decreases by 0.094%, 0.115%, 0.273%, and 0.124%, respectively. (3) When the degree of mixed use of land increases by one percentage point, the energy consumption of total transportation trips, commuting trips, high-energy-consumption trips, and low-energy-consumption trips decreases by 0.415%, 0.421%, 2.574%, and 1.197%, respectively. (4) The density of road intersections has a significant negative correlation effect on the energy consumption of traffic trips. (5) The impact of the built environment on the energy consumption of transportation trips is greater than that of residential buildings
    corecore