774 research outputs found

    Exact Numerical Solution of the BCS Pairing Problem

    Full text link
    We propose a new simulation computational method to solve the reduced BCS Hamiltonian based on spin analogy and submatrix diagonalization. Then we further apply this method to solve superconducting energy gap and the results are well consistent with those obtained by Bogoliubov transformation method. The exponential problem of 2^{N}-dimension matrix is reduced to the polynomial problem of N-dimension matrix. It is essential to validate this method on a real quantumComment: 7 pages, 3 figure

    Complete genome sequence of a newly identified porcine astrovirus genotype 3 strain US-MO123

    Get PDF
    Astrovirus (AstV) infections are among the most common causes of gastroenteritis and are also associated with extraintestinal manifestations in humans and many animals. Herein, for the first time, the complete genome sequence of newly identified porcine astrovirus genotype 3 (PAstV3) strain US-MO123 was determined. Sequence comparison and phylogenetic analysis showed that PAstV3 has the closest relationship with mink AstV and the human AstV strains VA1, VA2, and SG, indicating the same ancestral origin and zoonotic potential of the virus

    A New Strategy of Quantum-State Estimation for Achieving the Cramer-Rao Bound

    Get PDF
    We experimentally analyzed the statistical errors in quantum-state estimation and examined whether their lower bound, which is derived from the Cramer-Rao inequality, can be truly attained or not. In the experiments, polarization states of bi-photons produced via spontaneous parametric down-conversion were estimated employing tomographic measurements. Using a new estimation strategy based on Akaike's information criterion, we demonstrated that the errors actually approach the lower bound, while they fail to approach it using the conventional estimation strategy.Comment: 4 pages, 2 figure

    Landau Theory of the Phase Transitions in Half Doped Manganites: Interplay of Magnetic, Charge and Structural Orders

    Get PDF
    The order parameters of the magnetic, charge and structural orders at half-doped manganites are identified. A corresponding Landau theory of the phase transitions is formulated. Many structural and thermodynamical behaviors are accounted for and clarified within the framework. In particular, the theory provides a unified picture for the scenario of the phase transitions and their nature with respect to the variation of the tolerance factor of the manganites. It also accounts for the origin of the incommensurate nature of the orbital order and its subsequently accompanying antiferromagnetic order.Comment: 4 pages, 3 eps figures, Revtex, Phys. Rev. B61, 200

    Molecular scale contact line hydrodynamics of immiscible flows

    Full text link
    From extensive molecular dynamics simulations on immiscible two-phase flows, we find the relative slipping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard interfacial free energy. Our hydrodynamic model yields interfacial and velocity profiles matching those from the molecular dynamics simulations at the molecular-scale vicinity of the contact line. In particular, the behavior at high capillary numbers, leading to the breakup of the fluid-fluid interface, is accurately predicted.Comment: 33 pages for text in preprint format, 10 pages for 10 figures with captions, content changed in this resubmissio

    Specific heat and magnetic measurements in Nd0.5Sr0.5MnO3, Nd0.5Ca0.5MnO3 and Ho0.5Ca0.5MnO3 samples

    Full text link
    We studied the magnetization as a function of temperature and magnetic field in the compounds Nd0.5Sr0.5MnO3, Nd0.5Ca0.5MnO3 and Ho0.5Ca0.5MnO3. It allowed us to identify the ferromagnetic, antiferromagnetic and charge ordering phases in each case. The intrinsic magnetic moments of Nd3+ and Ho3+ ions experienced a short range order at low temperatures. We also did specific heat measurements with applied magnetic fields between 0 and 9 T and temperatures between 2 and 300 K in all three samples. Close to the charge ordering and ferromagnetic transition temperatures the specific heat curves showed peaks superposed to the characteristic response of the lattice oscillations. Below 10 K the specific heat measurements evidenced a Schottky-like anomaly for all samples. However, we could not successfully fit the curves to either a two level nor a distribution of two-level Schottky anomaly. Our results indicated that the peak temperature of the Schottky anomaly was higher in the compounds with narrower conduction band.Comment: submitted to PR

    Unusual magnetic relaxation behavior in La0.5Ca0.5MnO3 and Nd0.5Sr0.5MnO3

    Full text link
    We have carried out a systematic magnetic relaxation study, measured after applying and switching off a 5 T magnetic field to polycrystalline samples of La0.5Ca0.5MnO3 and Nd0.5Sr0.5MnO3. The long time logarithmic relaxation rate (LTLRR), decreased from 10 K to 150 K and increased from 150 K to 195 K in La0.5Ca0.5MnO3. This change in behavior was found to be related to the complete suppression of the antiferromagnetic phase above 150 K and in the presence of a 5 T magnetic field. At 195 K, the magnetization first decreased, and after a few minutes increased slowly as a function of time. Moreover, between 200 K and 245 K, the magnetization increased throughout the measured time span. The change in the slope of the curves, from negative to positive at about 200 K was found to be related to the suppression of antiferromagnetic fluctuations in small magnetic fields. A similar temperature dependence of the LTLRR was found for the Nd0.5Sr0.5MnO3 sample. However, the temperature where the LTLRR reached the minimum in Nd0.5Sr0.5MnO3 was lower than that of La0.5Ca0.5MnO3. This result agrees with the stronger ferromagnetic interactions that exist in Nd0.5Sr0.5MnO3 in comparison to La0.5Ca0.5MnO3. The above measurements suggested that the general temperature dependence of the LTLRR and the underlying physics were mainly independent of the particular charge ordering system considered. All relaxation curves could be fitted using a logarithmic law at long times. This slow relaxation was attributed to the coexistence of ferromagnetic and antiferromagnetic interactions between Mn ions, which produced a distribution of energy barriers.Comment: Accepted to PRB as a regular article, 10 figures, Scheduled Issue: 01 June 200

    Circular RNAs in Cardiovascular Diseases: Regulation and Therapeutic Applications

    Get PDF
    Cardiovascular disease is one of the leading causes of mortality worldwide. Recent studies have shown that circular RNAs (circRNAs) have emerged as important players in the prevention and treatment of cardiovascular diseases. circRNAs are a class of endogenous noncoding RNAs that are generated by back-splicing and are involved in many pathophysiological processes. In this review, we outline the current research progress on the regulatory roles of circRNAs in cardiovascular diseases. Further, new technologies and methods available for identifying, validating, synthesizing, and analyzing circRNAs, as well as their applications in therapeutics, are highlighted here. Moreover, we summarize the increasing insights into the potential use of circRNAs as circulating diagnostic and prognostic biomarkers. Finally, we discuss the prospects and challenges of circRNA therapeutic applications for cardiovascular disease therapy, with a particular focus on developing circRNA synthesis and engineering delivery systems

    Inhibition of HIPK2 protects stress-induced pathological cardiac remodeling

    Get PDF
    Background: Homeodomain-Interacting Protein Kinase 2 (HIPK2) has been reported to maintain basal cardiac function, however, its role in pathological cardiac remodeling remains unclear. Methods: HIPK2 inhibitors (tBID and PKI1H) treated mice and two lines of HIPK2−/− mice were subjected to transverse aortic constriction (TAC). HIPK2 knockdown were performed in neonatal rat cardiomyocytes (NRCMs), neonatal rat cardiac fibroblasts (NRCFs), and human embryonic stem cell-derived cardiomyocytes (hESC-CMs). Microarray analysis was used to screen HIPK2 targets. Overexpression of early growth response 3 (EGR3) and C-type lectin receptor 4D (CLEC4D) were performed in NRCMs, while an activator of Smad3 was used in NRCFs, to rescue the effects of HIPK2 knockdown. Finally, the effects of EGR3 and CLEC4D knockdown by AAV9 in TAC were determined. Findings: HIPK2 was elevated in TAC mice model, as well as cardiomyocyte hypertrophy and NRCFs fibrosis model. Pharmacological and genetic inhibition of HIPK2 improved cardiac function and suppressed cardiac hypertrophy and fibrosis induced by TAC. In vitro, HIPK2 inhibition prevented cardiomyocyte hypertrophic growth and NRCFs proliferation and differentiation. At the mechanistic level, we identified EGR3 and CLEC4D as new targets of HIPK2, which were regulated by ERK1/2-CREB and mediated the protective function of HIPK2 inhibition in cardiomyocytes. Meanwhile, inhibition of phosphorylation of Smad3 was responsible for the suppression of cardiac fibroblasts proliferation and differentiation by HIPK2 inhibition. Finally, we found that inhibition of EGR3 or CLEC4D protected against TAC. Interpretation: HIPK2 inhibition protects against pathological cardiac remodeling by reducing EGR3 and CLEC4D with ERK1/2-CREB inhibition in cardiomyocytes, and by suppressing the phosphorylation of Smad3 in cardiac fibroblasts. Funding: This work was supported by the grants from National Key Research and Development Project (2018YFE0113500 to J.X.), National Natural Science Foundation of China (82020108002 and 81911540486 to J.X., 81400647 to MJ Xu), the grant from Science and Technology Commission of Shanghai Municipality (21XD1421300 and 20DZ2255400 to J.X.), the “Dawn” Program of Shanghai Education Commission (19SG34 to J.X.), and Shanghai Sailing Program (21YF1413200 to Q.Z.)
    • 

    corecore