585 research outputs found

    Gadofluorine M-enhanced MRI shows involvement of circumventricular organs in neuroinflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circumventricular organs (CVO) are cerebral areas with incomplete endothelial blood-brain barrier (BBB) and therefore regarded as "gates to the brain". During inflammation, they may exert an active role in determining immune cell recruitment into the brain.</p> <p>Methods</p> <p>In a longitudinal study we investigated <it>in vivo </it>alterations of CVO during neuroinflammation, applying Gadofluorine M- (Gf) enhanced magnetic resonance imaging (MRI) in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. SJL/J mice were monitored by Gadopentate dimeglumine- (Gd-DTPA) and Gf-enhanced MRI after adoptive transfer of proteolipid-protein-specific T cells. Mean Gf intensity ratios were calculated individually for different CVO and correlated to the clinical disease course. Subsequently, the tissue distribution of fluorescence-labeled Gf as well as the extent of cellular inflammation was assessed in corresponding histological slices.</p> <p>Results</p> <p>We could show that the Gf signal intensity of the choroid plexus, the subfornicular organ and the area postrema increased significantly during experimental autoimmune encephalomyelitis, correlating with (1) disease severity and (2) the delay of disease onset after immunization. For the choroid plexus, the extent of Gf enhancement served as a diagnostic criterion to distinguish between diseased and healthy control mice with a sensitivity of 89% and a specificity of 80%. Furthermore, Gf improved the detection of lesions, being particularly sensitive to optic neuritis. In correlated histological slices, Gf initially accumulated in the extracellular matrix surrounding inflammatory foci and was subsequently incorporated by macrophages/microglia.</p> <p>Conclusion</p> <p>Gf-enhanced MRI provides a novel highly sensitive technique to study cerebral BBB alterations. We demonstrate for the first time <it>in vivo </it>the involvement of CVO during the development of neuroinflammation.</p

    Cerebral blood perfusion changes in multiple sclerosis

    Get PDF
    The proximity of immune cell aggregations to the vasculature is a hallmark of multiple sclerosis. Furthermore, it is widely accepted that inflammation is able to modulate the microcirculation. Until recently, the detection of cerebral blood perfusion changes was technically challenging, and perfusion studies in multiple sclerosis patients yielded contradictory results. However, new developments in fast magnetic resonance imaging have enabled us to image the cerebral hemodynamics based on the dynamic tracking of a bolus of paramagnetic contrast agents (dynamic susceptibility contrast). This review discusses the technical principles, possible pitfalls, and potential for absolute quantification of cerebral blood volume and flow in a clinical setting. It also outlines recent findings on inflammation associated perfusion changes, which are inseparable from pathological considerations in multiple sclerosis

    Vitamin D and Disease Severity in Multiple Sclerosis-Baseline Data From the Randomized Controlled Trial (EVIDIMS)

    Get PDF
    Objective: To investigate the associations between hypovitaminosis D and disease activity in a cohort of relapsing remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS) patients. Methods: In 51 RRMS and 2 CIS patients on stable interferon-β-1b (IFN-β-1b) treatment recruited to the EVIDIMS study (Efficacy of Vitamin D Supplementation in Multiple Sclerosis (NCT01440062) baseline serum vitamin D levels were evaluated. Patients were dichotomized based on the definition of vitamin D deficiency which is reflected by a < 30 vs. ≥ 30 ng/ml level of 25-hydroxyvitamin D (25(OH)D). Possible associations between vitamin D deficiency and both clinical and MRI features of the disease were analyzed. Results: Median (25, 75% quartiles, Q) 25(OH)D level was 18 ng/ml (12, 24). Forty eight out of 53 (91%) patients had 25(OH)D levels < 30 ng/ml (p < 0.001). Patients with 25(OH)D ≥ 30 ng/ml had lower median (25, 75% Q) T2-weighted lesion counts [25 (24, 33)] compared to patients with 25(OH)D < 30 ng/ml [60 (36, 84), p = 0.03; adjusted for age, gender and disease duration: p < 0.001]. Expanded disability status scale (EDSS) score was negatively associated with serum 25(OH)D levels in a multiple linear regression, including age, sex, and disease duration (adjusted: p < 0.001). Interpretation: Most patients recruited in the EVIDIMS study were vitamin D deficient. Higher 25(OH)D levels were associated with reduced T2 weighted lesion count and lower EDSS scores

    Expression pattern of the thrombopoietin receptor (Mpl) in the murine central nervous system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thrombopoietin (Thpo) and its receptor (Mpl), which regulate megakaryopoiesis, are expressed in the central nervous system (CNS), where Thpo is thought to exert pro-apoptotic effects on newly generated neurons. Mpl expression has been analysed in brain tissue on transcript level and in cultured primary rat neurons and astrocytes on protein level. Herein, we analysed Mpl expression in the developing and adult murine CNS by immunohistochemistry and investigated the brain of mice with homozygous <it>Mpl </it>deficiency (<it>Mpl</it><sup>-/-</sup>) by MRI.</p> <p>Results</p> <p>Mpl was not detectable at developmental stages E12 to E15 in any resident cells of the CNS. From E18 onwards, robust Mpl expression was found in various brain areas, including cerebral cortex, olfactory bulb, thalamus, hypothalamus, medulla, pons, and the grey matter of spinal cord. However, major developmental changes became obvious: In the subventricular zone of the cerebral cortex Mpl expression occurred only during late gestation, while in the hippocampus Mpl expression was detectable for first time at stage P4. In the white matter of the cerebellum Mpl expression was restricted to the perinatal period. In the adult cerebellum, Mpl expression switched to Purkinje cell. The majority of other Mpl-positive cells were NeuN-positive neurons. None of the cells could be double-labelled with astrocyte marker GFAP. <it>Mpl</it><sup>-/- </sup>mice showed no gross abnormalities of the brain.</p> <p>Conclusions</p> <p>Our data locate Mpl expression to neurons at different subdivisions of the spinal cord, rhombencephalon, midbrain and prosencephalon. Besides neuronal cells Mpl protein is also expressed in Purkinje cells of the adult cerebellum.</p

    Thermoelectrical Field Effects in Low Dimensional Structure Solar Cells

    Full text link
    Taking into account the temperature gradients in solar cells, it is shown that their efficiency can be increased beyond the Shockley-Queisser limit (J. Appl. Phys. 32 (1961) 510). The driving force for this gain is the temperature gradient between this region and its surroundings. A quantitative theory is given. Though the effect is found to be weak in conventional solar cells, it is argued that it can be substantially increased by proper choice of materials and design of the device. In particular, it is shown that the insertion of a quantum well can enhance the efficiency beyond one of the single gap cell, due to the presence of temperature jumps at the heterojunctions.Comment: Published in Special issue Physica E 14 (1-2) on Nanostructures in Photovoltaic

    Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management

    Get PDF
    Conventional magnetic resonance imaging (MRI) at 1.5 Tesla (T) is limited by modest spatial resolution and signal-to-noise ratio (SNR), impeding the identification and classification of inflammatory central nervous system changes in current clinical practice. Gaining from enhanced susceptibility effects and improved SNR, ultrahigh field MRI at 7 T depicts inflammatory brain lesions in great detail. This review summarises recent reports on 7 T MRI in neuroinflammatory diseases and addresses the question as to whether ultrahigh field MRI may eventually improve clinical decision-making and personalised disease management

    Beyond blood brain barrier breakdown – in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI

    Get PDF
    BACKGROUND: Gadopentate dimeglumine (Gd-DTPA) enhanced magnetic resonance imaging (MRI) is widely applied for the visualization of blood brain barrier (BBB) breakdown in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Recently, the potential of magnetic nanoparticles to detect macrophage infiltration by MRI was demonstrated. We here investigated a new class of very small superparamagnetic iron oxide particles (VSOP) as novel contrast medium in murine adoptive-transfer EAE. METHODS: EAE was induced in 17 mice via transfer of proteolipid protein specific T cells. MR images were obtained before and after application of Gd-DTPA and VSOP on a 7 Tesla rodent MR scanner. The enhancement pattern of the two contrast agents was compared, and correlated to histology, including Prussian Blue staining for VSOP detection and immunofluorescent staining against IBA-1 to identify macrophages/microglia. RESULTS: Both contrast media depicted BBB breakdown in 42 lesions, although differing in plaques appearances and shapes. Furthermore, 13 lesions could be exclusively visualized by VSOP. In the subsequent histological analysis, VSOP was localized to microglia/macrophages, and also diffusely dispersed within the extracellular matrix. CONCLUSION: VSOP showed a higher sensitivity in detecting BBB alterations compared to Gd-DTPA enhanced MRI, providing complementary information of macrophage/microglia activity in inflammatory plaques that has not been visualized by conventional means

    Brain Viscoelasticity Alteration in Chronic-Progressive Multiple Sclerosis

    Get PDF
    Introduction: Viscoelastic properties indicate structural alterations in biological tissues at multiple scales with high sensitivity. Magnetic Resonance Elastography (MRE) is a novel technique that directly visualizes and quantitatively measures biomechanical tissue properties in vivo. MRE recently revealed that early relapsing-remitting multiple sclerosis (MS) is associated with a global decrease of the cerebral mechanical integrity. This study addresses MRE and MR volumetry in chronic-progressive disease courses of MS
    • …
    corecore