238 research outputs found

    Optic disc classification by the Heidelberg Retina Tomograph and by physicians with varying experience of glaucoma

    Get PDF
    PurposeTo compare the diagnostic accuracy of the Heidelberg Retina Tomograph's (HRT) Moorfields regression analysis (MRA) and glaucoma probability score (GPS) with that of subjective grading of optic disc photographs performed by ophthalmologists with varying experience of glaucoma and by ophthalmology residents.MethodsDigitized disc photographs and HRT images from 97 glaucoma patients with visual field defects and 138 healthy individuals were classified as either within normal limits (WNL), borderline (BL), or outside normal limits (ONL). Sensitivity and specificity were compared for MRA, GPS, and the physicians. Analyses were also made according to disc size and for advanced visual field loss.ResultsForty-five physicians participated. When BL results were regarded as normal, sensitivity was significantly higher (P<5%) for both MRA and GPS compared with the average physician, 87%, 79%, and 62%, respectively. Specificity ranged from 86% for MRA to 97% for general ophthalmologists, but the differences were not significant. In eyes with small discs, sensitivity was 75% for MRA, 60% for the average doctor, and 25% for GPS; in eyes with large discs, sensitivity was 100% for both GPS and MRA, but only 68% for physicians.ConclusionOur results suggest that sensitivity of MRA is superior to that of the average physician, but not that of glaucoma experts. MRA correctly classified all eyes with advanced glaucoma and showed the best sensitivity in eyes with small optic discs

    Resolving the ancestry of Austronesian-speaking populations

    Get PDF
    There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The “out-of-Taiwan” model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion

    Reproducibility of in-vivo OCT measured three-dimensional human lamina cribrosa microarchitecture

    Get PDF
    Purpose: To determine the reproducibility of automated segmentation of the three-dimensional (3D) lamina cribrosa (LC) microarchitecture scanned in-vivo using optical coherence tomography (OCT). Methods: Thirty-nine eyes (8 healthy, 19 glaucoma suspects and 12 glaucoma) from 49 subjects were scanned twice using swept-source (SS-) OCT in a 3.5x3.5x3.64 mm (400x400x896 pixels) volume centered on the optic nerve head, with the focus readjusted after each scan. The LC was automatically segmented and analyzed for microarchitectural parameters, including pore diameter, pore diameter standard deviation (SD), pore aspect ratio, pore area, beam thickness, beam thickness SD, and beam thickness to pore diameter ratio. Reproducibility of the parameters was assessed by computing the imprecision of the parameters between the scans. Results: The automated segmentation demonstrated excellent reproducibility. All LC microarchitecture parameters had an imprecision of less or equal to 4.2%. There was little variability in imprecision with respect to diagnostic category, although the method tends to show higher imprecision amongst healthy subjects. Conclusion: The proposed automated segmentation of the LC demonstrated high reproducibility for 3D LC parameters. This segmentation analysis tool will be useful for in-vivo studies of the LC. © 2014 Wang et al

    Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour

    Get PDF
    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing

    Evaluation of a combined index of optic nerve structure and function for glaucoma diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The definitive diagnosis of glaucoma is currently based on congruent damage to both optic nerve structure and function. Given widespread quantitative assessment of both structure (imaging) and function (automated perimetry) in glaucoma, it should be possible to combine these quantitative data to diagnose disease. We have therefore defined and tested a new approach to glaucoma diagnosis by combining imaging and visual field data, using the anatomical organization of retinal ganglion cells.</p> <p>Methods</p> <p>Data from 1499 eyes of glaucoma suspects and 895 eyes with glaucoma were identified at a single glaucoma center. Each underwent Heidelberg Retinal Tomograph (HRT) imaging and standard automated perimetry. A new measure combining these two tests, the structure function index (SFI), was defined in 3 steps: 1) calculate the probability that each visual field point is abnormal, 2) calculate the probability of abnormality for each of the six HRT optic disc sectors, and 3) combine those probabilities with the probability that a field point and disc sector are linked by ganglion cell anatomy. The SFI was compared to the HRT and visual field using receiver operating characteristic (ROC) analysis.</p> <p>Results</p> <p>The SFI produced an area under the ROC curve (0.78) that was similar to that for both visual field mean deviation (0.78) and pattern standard deviation (0.80) and larger than that for a normalized measure of HRT rim area (0.66). The cases classified as glaucoma by the various tests were significantly non-overlapping. Based on the distribution of test values in the population with mild disease, the SFI may be better able to stratify this group while still clearly identifying those with severe disease.</p> <p>Conclusions</p> <p>The SFI reflects the traditional clinical diagnosis of glaucoma by combining optic nerve structure and function. In doing so, it identifies a different subset of patients than either visual field testing or optic nerve head imaging alone. Analysis of prospective data will allow us to determine whether the combined index of structure and function can provide an improved standard for glaucoma diagnosis.</p

    Comprehensive mutation analysis of 17 Y-chromosomal short tandem repeat polymorphisms included in the AmpFlSTR® Yfiler® PCR amplification kit

    Get PDF
    The Y-chromosomal short tandem repeat (Y-STR) polymorphisms included in the AmpFlSTR® Yfiler® polymerase chain reaction amplification kit have become widely used for forensic and evolutionary applications where a reliable knowledge on mutation properties is necessary for correct data interpretation. Therefore, we investigated the 17 Yfiler Y-STRs in 1,730–1,764 DNA-confirmed father–son pairs per locus and found 84 sequence-confirmed mutations among the 29,792 meiotic transfers covered. Of the 84 mutations, 83 (98.8%) were single-repeat changes and one (1.2%) was a double-repeat change (ratio, 1:0.01), as well as 43 (51.2%) were repeat gains and 41 (48.8%) repeat losses (ratio, 1:0.95). Medians from Bayesian estimation of locus-specific mutation rates ranged from 0.0003 for DYS448 to 0.0074 for DYS458, with a median rate across all 17 Y-STRs of 0.0025. The mean age (at the time of son’s birth) of fathers with mutations was with 34.40 (±11.63) years higher than that of fathers without ones at 30.32 (±10.22) years, a difference that is highly statistically significant (p < 0.001). A Poisson-based modeling revealed that the Y-STR mutation rate increased with increasing father’s age on a statistically significant level (α = 0.0294, 2.5% quantile = 0.0001). From combining our data with those previously published, considering all together 135,212 meiotic events and 331 mutations, we conclude for the Yfiler Y-STRs that (1) none had a mutation rate of >1%, 12 had mutation rates of >0.1% and four of <0.1%, (2) single-repeat changes were strongly favored over multiple-repeat ones for all loci but 1 and (3) considerable variation existed among loci in the ratio of repeat gains versus losses. Our finding of three Y-STR mutations in one father–son pair (and two pairs with two mutations each) has consequences for determining the threshold of allelic differences to conclude exclusion constellations in future applications of Y-STRs in paternity testing and pedigree analyses

    Genetics of skin color variation in Europeans: genome-wide association studies with functional follow-up

    Get PDF
    In the International Visible Trait Genetics (VisiGen) Consortium, we investigated the genetics of human skin color by combining a series of genome-wide association studies (GWAS) in a total of 17,262 Europeans with functional follow-up of discovered loci. Our GWAS provide the first genome-wide significant evidence for chromosome 20q11.22 harboring the ASIP gene being explicitly associated with skin color in Europeans. In addition, genomic loci at 5p13.2 (SLC45A2), 6p25.3 (IRF4), 15q13.1 (HERC2/OCA2), and 16q24.3 (MC1R) were confirmed to be involved in skin coloration in Europeans. In follow-up gene expression and regulation studies of 22 genes in 20q11.22, we highlighted two novel genes EIF2S2 and GSS, serving as competing functional candidates in this region and providing future research lines. A genetically inferred skin color score obtained from the 9 top-associated SNPs from 9 genes in 940 worldwide samples (HGDP-CEPH) showed a clear gradual pattern in Western Eurasians similar to the distribution of physical skin color, suggesting the used 9 SNPs as suitable markers for DNA prediction of skin color in Europeans and neighboring populations, relevant in future forensic and anthropological investigations

    Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania

    Get PDF
    It has recently been shown that ancestors of New Guineans and Bougainville Islanders have inherited a proportion of their ancestry from Denisovans, an archaic hominin group from Siberia. However, only a sparse sampling of populations from Southeast Asia and Oceania were analyzed. Here, we quantify Denisova admixture in 33 additional populations from Asia and Oceania. Aboriginal Australians, Near Oceanians, Polynesians, Fijians, east Indonesians, and Mamanwa (a ‘‘Negrito’’ group from the Philippines) have all inherited genetic material from Denisovans, but mainland East Asians, western Indonesians, Jehai (a Negrito group from Malaysia), and Onge (a Negrito group from the Andaman Islands) have not. These results indicate that Denisova gene flow occurred into the common ancestors of New Guineans, Australians, and Mamanwa but not into the ancestors of the Jehai and Onge and suggest that relatives of present-day East Asians were not in Southeast Asia when the Denisova gene flow occurred. Our finding that descendants of the earliest inhabitants of Southeast Asia do not all harbor Denisova admixture is inconsistent with a history in which the Denisova interbreeding occurred in mainland Asia and then spread over Southeast Asia, leading to all its earliest modern human inhabitants. Instead, the data can be most parsimoniously explained if the Denisova gene flow occurred in Southeast Asia itself. Thus, archaic Denisovans must have lived over an extraordinarily broad geographic and ecological range, from Siberia to tropical Asia
    corecore