16 research outputs found

    PET/CT Respiratory Motion Correction With a Single Attenuation Map Using NAC Derived Deformation Fields

    Get PDF
    Respiratory motion correction is beneficial in positron emission tomography. Different strategies for handling attenuation correction in conjunction with motion correction exist. In clinical practice, usually a single attenuation map is available, derived from computed tomography in one respiratory state. This can introduce an unwanted bias (through misaligned anatomy) into the motion correction algorithm. This paper builds upon previous work which suggested that non-attenuation corrected data was suitable for motion estimation, through the use of motion models, if time-of-flight data are available. Here, the previous work is expanded upon by incorporating attenuation correction in an iterative process. Non-attenuation corrected volumes are reconstructed using ordered subset expectation maximisation and used as input for motion model estimation. A single attenuation map is then warped to the volumes, using the motion model, the volumes are attenuation corrected, after which another motion estimation and correction cycle is performed. For validation, 4-Dimensional Extended Cardiac Torso simulations are used, for one bed position, with a field of view including the base of the lungs and the diaphragm. The output from the proposed method is evaluated against a non-motion corrected reconstruction of the same data visually, using a profile as well as standardised uptake value analysis. Results indicate that motion correction of inter-respiratory cycle motion is possible with this method, while accounting for attenuation deformatio

    Impact of Time-of-Flight on Respiratory Motion Modelling using Non-Attenuation-Corrected PET

    Get PDF
    Respiratory motion reduces image quality in Positron Emission Tomography (PET). Unless gated Computed Tomography (CT) or Magnetic Resonance (MR) data are available, motion correction relies on registration of the PET data. To avoid mis-registration due to attenuation mismatches, most existing methods rely on pair-wise registration of Non-Attenuation Corrected (NAC) PET volumes. This is a challenging problem due to the low contrast and high noise of these volumes. This paper investigates the possibility of using motion models for respiratory motion correction in PET, and in particular whether incorporating Time-of-Flight (TOF) information increases the accuracy of the motion models derived from the NAC reconstructed images. 4D Extended Cardiac-Torso (XCAT) phantom simulations are used for one bed position with a field of view including the base of the lungs and the diaphragm. A TOF resolution of 375ps is used. NAC images are reconstructed using Orded SubSet Expectation Maximisation (OSEM) and used as input for motion model estimation. Different motion models are compared using the original XCAT input volumes. The results indicate that TOF improves the accuracy of the motion model considerably

    Spezielle Arbeitstechniken der DC

    No full text

    Quantitative Auswertung von DĂĽnnschicht-Chromatogrammen

    No full text

    Dokumentation der DĂĽnnschicht-Chromatogramme

    No full text

    Sorptionsmittel zur DC

    No full text

    Zur geschichtlichen Entwicklung der Methode

    No full text
    corecore