63 research outputs found

    A methodology for greenhouse gas emission and carbon sequestration assessments in agriculture: Supplemental materials for info series analyzing low emissions agricultural practices in USAID development projects

    Get PDF
    As many countries are increasing commitments to address climate change, national governments are exploring how they could best reduce the impact of their greenhouse gas (GHG) emissions. Agriculture is a major contributor to GHG emissions, especially in developing countries, where this sector accounts for an average of 35% of all GHG emissions. Yet many agricultural interventions can also help to reduce GHG impacts. This paper presents the methodology to estimate impacts of agricultural interventions on GHG emissions and carbon sequestration. This methodology is used in an analysis of several development projects supported by the United States Agency for International Development (USAID) and presented as a series of case studies. The methodology allows users to estimate (1) GHG impacts at project scale, (2) GHG emissions by agricultural practice, and (3) GHG emissions per unit of output (i.e., GHG emission intensity). The presented approach is a rapid assessment technique that is well suited to provide an indication of the magnitude of GHG impacts and to compare GHG impact strength of different field activities or cropping systems. It is well adapted to a context of data scarcity, as is common in agricultural investment planning where aggregate data on agricultural land use and management practices are available but where field measurements of GHG and carbon stock changes are missing. This approach is instrumental to inform agricultural investment, project, and policy planners about challenges and opportunities associated with achieving and accounting for GHG emission reductions in agricultural development projects

    Analyzing the greenhouse gas impact potential of smallholder development actions across a global food security program

    Get PDF
    This article analyses the greenhouse gas (GHG) impact potential of improved management practices and technologies for smallholder agriculture promoted under a global food security development program. Under \u27business-as-usual\u27 development, global studies on the future of agriculture to 2050 project considerable increases in total food production and cultivated area. Conventional cropland intensification and conversion of natural vegetation typically result in increased GHG emissions and loss of carbon stocks. There is a strong need to understand the potential greenhouse gas impacts of agricultural development programs intended to achieve large-scale change, and to identify pathways of smallholder agricultural development that can achieve food security and agricultural production growth without drastic increases in GHG emissions. In an analysis of 134 crop and livestock production systems in 15 countries with reported impacts on 4.8 million ha, improved management practices and technologies by smallholder farmers significantly reduce GHG emission intensity of agricultural production, increase yields and reduce post-harvest losses, while either decreasing or only moderately increasing net GHG emissions per area. Investments in both production and post-harvest stages meaningfully reduced GHG emission intensity, contributing to low emission development. We present average impacts on net GHG emissions per hectare and GHG emission intensity, while not providing detailed statistics of GHG impacts at scale that are associated to additional uncertainties. While reported improvements in smallholder systems effectively reduce future GHG emissions compared to business-as-usual development, these contributions are insufficient to significantly reduce net GHG emission in agriculture beyond current levels, particularly if future agricultural production grows at projected rates

    Two-dimensional X-ray diffraction as a tool for the rapid, non-destructive detection of low calcite quantities in aragonitic corals

    Get PDF
    Paleoclimate reconstructions based on reef corals require precise detection of diagenetic alteration. Secondary calcite can significantly affect paleotemperature reconstructions at very low amounts of ~1%. X-ray powder diffraction is routinely used to detect diagenetic calcite in aragonitic corals. This procedure has its limitations as single powder samples might not represent the entire coral heterogeneity. A conventional and a 2-D X-ray diffractometer were calibrated with gravimetric powder standards of high and low magnesium calcite (0.3% to 25% calcite). Calcite contents <1% can be recognized with both diffractometer setups based on the peak area of the calcite [104] reflection. An advantage of 2-D-XRD over convenient 1-D-XRD methods is the nondestructive and rapid detection of calcite with relatively high spatial resolution directly on coral slabs. The calcite detection performance of the 2-D-XRD setup was tested on thin sections from fossil Porites sp. samples that, based on powder XRD measurements, showed <1% calcite. Quantification of calcite contents for these thin sections based on 2-D-XRD and digital image analysis showed very similar results. This enables spot measurements with diameters of ∼4 mm, as well as systematic line scans along potential tracks previous to geochemical proxy sampling. In this way, areas affected by diagenetic calcite can be avoided and alternative sampling tracks can be defined. Alternatively, individual sampling positions that show dubious proxy results can later be checked for the presence of calcite. The presented calibration and quantification method can be transferred to any 2-D X-ray diffractometer

    Minimal Reporting Standards for Active Middle Ear Hearing Implants.

    Get PDF
    There is currently no standardized method for reporting audiological, surgical and subjective outcome measures in clinical trials with active middle ear implants (AMEIs). It is often difficult to compare studies due to data incompatibility and to perform meta-analyses across different centres is almost impossible. A committee of ENT and audiological experts from Germany, Austria and Switzerland decided to address this issue by developing new minimal standards for reporting the outcomes of AMEI clinical trials. The consensus presented here aims to provide a recommendation to enable better inter-study comparability

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore