99 research outputs found

    Climate Change Impacts on Global Agriculture

    Get PDF
    Based on predicted changes in the magnitude and distribution of global precipitation, temperature and river flow under the IPCC SRES A1B and A2 scenarios, this study assesses the potential impacts of climate change and CO2 fertilization on global agriculture. The analysis uses the new version of the GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. Future climate change is likely to modify regional water endowments and soil moisture. As a consequence, the distribution of harvested land would change, modifying production and international trade patterns. The results suggest that a partial analysis of the main factors through which climate change will affect agricultural productivity lead to different outcomes. Our results show that global food production, welfare and GDP fall in the two time periods and SRES scenarios. Higher food prices are expected. Independently of the SRES scenario, expected losses in welfare are marked in the long term. They are larger under the SRES A2 scenario for the 2020s and under the SRES A1B scenario for the 2050s. The results show that countries are not only influenced by regional climate change, but also by climate-induced changes in competitiveness.Computable General Equilibrium, Climate Change, Agriculture, Water Resources, River Flow

    Validation of an ensemble modelling system for climate projections for the northwest European shelf seas

    Get PDF
    The aim of this study was to evaluate the performance of a modelling system used to represent the northwest European shelf seas. Variants of the coupled atmosphere–ocean global climate model, HadCM3, were run under conditions of historically varying concentrations of greenhouse gases and other radiatively active constituents. The atmospheric simulation for the shelf sea region and its surrounds was downscaled to finer spatial scales using a regional climate model (HadRM3); these simulations were then used to drive a river routing scheme (TRIP). Together, these provide the atmospheric, oceanic and riverine boundary conditions to drive the shelf seas model POLCOMS. Additionally, a shelf seas simulation was driven by the ERA-40 reanalysis in place of HadCM3. We compared the modelling systems output against a sea surface temperature satellite analysis product, a quality controlled ocean profile dataset and values of volume transport through particular ocean sections from the literature. In addition to assessing model drift with a pre-industrial control simulation the modelling system was evaluated against observations and the reanalysis driven simulation. We concluded that the modelling system provided an excellent (good) representation of the spatial patterns of temperature (salinity). It provided a good representation of the mean temperature climate, and a sufficient representation of the mean salinity and water column structure climate. The representation of the interannual variability was sufficient, while the overall shelf-wide circulation was qualitatively good. From this wide range of metrics we judged the modelling system fit for the purpose of providing centennial climate projections for the northwest European shelf seas

    Food security outcomes under a changing climate: impacts of mitigation and adaptation on vulnerability to food insecurity

    Get PDF
    Climate change is a potential threat to achieving food security, particularly in the most food insecure regions. However, interpreting climate change projections to better understand the potential impacts of a changing climate on food security outcomes is challenging. This paper addresses this challenge through presenting a framework that enables rapid country-level assessment of vulnerability to food insecurity under a range of climate change and adaptation investment scenarios. The results show that vulnerability to food insecurity is projected to increase under all emissions scenarios, and the geographic distribution of vulnerability is similar to that of the present-day; parts of sub-Saharan Africa and South Asia are most severely affected. High levels of adaptation act to off-set these increases; however, only the scenario with the highest level of mitigation combined with high levels of adaptation shows improvements in vulnerability compared to the present-day. The results highlight the dual requirement for mitigation and adaptation to avoid the worst impacts of climate change and to make gains in tackling food insecurity. The approach is an update to the existing Hunger and Climate Vulnerability Index methodology to enable future projections, and the framework presented allows rapid updates to the results as and when new information becomes available, such as updated country-level yield data or climate model output. This approach provides a framework for assessing policy-relevant human food security outcomes for use in long-term climate change and food security planning; the results have been made available on an interactive website for policymakers ( www.metoffice.gov.uk/food-insecurity-index )

    Evaluation of JULES-crop performance against site observations of irrigated maize from Mead, Nebraska

    Get PDF
    We use the results to point to future priorities for model development and describe how our methodology can be adapted to set up model runs for other sites and crop varietie

    Compensatory climate effects link trends in global runoff to rising atmospheric CO2 concentration

    Get PDF
    River runoff is a key attribute of the land surface, that additionally has a strong influence on society by the provision of freshwater. Yet various environmental factors modify runoff levels, and some trends could be detrimental to humanity. Drivers include elevated CO2 concentration, climate change, aerosols and altered land-use. Additionally, nitrogen deposition and tropospheric ozone changes influence plant functioning, and thus runoff, yet their importance is less understood. All these effects are now included in the JULES-CN model. We first evaluate runoff estimates from this model against 42 large basin scales, and then conduct factorial simulations to investigate these mechanisms individually. We determine how different drivers govern the trends of runoff over three decades for which data is available. Numerical results suggest rising atmospheric CO2 concentration is the most important contributor to the global mean runoff trend, having a significant mean increase of +0.18 ± 0.006 mm yr−2 and due to the overwhelming importance of physiological effects. However, at the local scale, the dominant influence on historical runoff trends is climate in 82% of the global land area. This difference is because climate change impacts, mainly due to precipitation changes, can be positive (38% of global land area) or negative (44% of area), depending on location. For other drivers, land use change leads to increased runoff trends in wet tropical regions and decreased runoff in Southeast China, Central Asia and the eastern USA. Modelling the terrestrial nitrogen cycle in general suppresses runoff decreases induced by the CO2 fertilization effect, highlighting the importance of carbon–nitrogen interactions on ecosystem hydrology. Nitrogen effects do, though, induce decreasing trend components for much of arid Australia and the boreal regions. Ozone influence was mainly smaller than other drivers

    Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO2 Uptake

    Get PDF
    The increasing strength of land CO2 uptake in the 2000s has been attributed to a stimulating effect of rising atmospheric CO2 on photosynthesis (CO2 fertilization). Using terrestrial biosphere models, we show that enhanced CO2 uptake is induced not only by CO2 fertilization but also an increasing uptake by plant regrowth (accounting for 0.33 ± 0.10 Pg C/year increase of CO2 uptake in the 2000s compared with the 1960s-1990s) with its effect most pronounced in eastern North America, southern‐eastern Europe, and southeastern temperate Eurasia. Our analysis indicates that ecosystems in North America and Europe have established the current productive state through regrowth since the 1960s, and those in temperate Eurasia are still in a stage from regrowth following active afforestation in the 1980s-1990s. As the strength of model representation of CO2 fertilization is still in debate, plant regrowth might have a greater potential to sequester carbon than indicated by this study

    The simulation of mineral dust in the United Kingdom Earth System Model UKESM1

    Get PDF
    Mineral dust plays an important role in Earth system models and is linked to many components, including atmospheric wind speed, precipitation and radiation, surface vegetation cover and soil properties and oceanic biogeochemical systems. In this paper, the dust scheme in the first configuration of the United Kingdom Earth System Model UKESM1 is described, and simulations of dust and its radiative effects are presented and compared with results from the parallel coupled atmosphere–ocean general circulation model (GCM) HadGEM3-GC3.1. Not only changes in the driving model fields but also changes in the dust size distribution are shown to lead to considerable differences to the present-day dust simulations and to projected future changes. UKESM1 simulations produce a present-day, top-of-the-atmosphere (ToA) dust direct radiative effect (DRE – defined as the change in downward net flux directly due to the presence of dust) of 0.086 W m−2 from a dust load of 19.5 Tg. Under climate change pathways these values decrease considerably. In the 2081–2100 mean of the Shared Socioeconomic Pathway SSP5–8.45 ToA DRE reaches 0.048 W m−2 from a load of 15.1 Tg. In contrast, in HadGEM3-GC3.1 the present-day values of −0.296 W m−2 and 15.0 Tg are almost unchanged at −0.289 W m−2 and 14.5 Tg in the 2081–2100 mean. The primary mechanism causing the differences in future dust projections is shown to be the vegetation response, which dominates over the direct effects of warming in our models. Though there are considerable uncertainties associated with any such estimates, the results presented demonstrate both the importance of the size distribution for dust modelling and also the necessity of including Earth system processes such as interactive vegetation in dust simulations for climate change studies

    The terrestrial carbon budget of South and Southeast Asia

    Get PDF
    Accomplishing the objective of the current climate policies will require establishing carbon budget and flux estimates in each region and county of the globe by comparing and reconciling multiple estimates including the observations and the results of top-down atmospheric carbon dioxide (CO2) inversions and bottom-up dynamic global vegetation models. With this in view, this study synthesizes the carbon source/sink due to net ecosystem productivity (NEP), land cover land use change (ELUC), fires and fossil burning (EFIRE) for the South Asia (SA), Southeast Asia (SEA) and South and Southeast Asia (SSEA=SA+SEA) and each country in these regions using the multiple top-down and bottom-up modeling results. The terrestrial net biome productivity (NBP=NEP-ELUC-EFIRE) calculated based on bottom-up models in combination with EFIRE based on GFED4s data show net carbon sinks of 217±147, 10±55, and 227±279 TgC yr?1 for SA, SEA, and SSEA. The top-down models estimated NBP net carbon sinks were 20±170, 4±90 and 24±180 TgC yr?1. In comparison, regional emissions from the combustion of fossil fuels were 495, 275, and 770 TgC yr?1, which are many times higher than the NBP sink estimates, suggesting that the contribution of the fossil fuel emissions to the carbon budget of SSEA results in a significant net carbon source during the 2000s. When considering both NBP and fossil fuel emissions for the individual countries within the regions, Bhutan and Laos were net carbon sinks and rest of the countries were net carbon source during the 2000s. The relative contributions of each of the fluxes (NBP, NEP, ELUC, and EFIRE, fossil fuel emissions) to a nation’s net carbon flux varied greatly from country to country, suggesting a heterogeneous dominant carbon fluxes on the country-level throughout SSEA

    Climate Change and the Global Pattern of Moraine-Dammed Glacial Lake Outburst Floods

    Get PDF
    Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity – rather unexpectedly – have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century
    corecore