74 research outputs found
Lack of detectable DNA uptake by transmission of selected recipients in mono-associated rats
An important concern revealed in the public discussion of the use of genetically modified (GM) plants for human consumption, is the potential transfer of DNA from these plants to bacteria present in the gastrointestinal tract. Especially, there is a concern that antibiotic resistance genes used for the construction of GM plants end up in pathogenic bacteria, eventually leading to untreatable disease. Three different bacterial species (Escherichia coli, Bacillus subtilis, Streptococcus gordonii), all natural inhabitants of the food and intestinal tract environment were used as recipients for uptake of DNA. As source of DNA both plasmid and genomic DNA from GM plants were used in in vitro and in vivo transformation studies. Mono-associated rats, creating a worst-case scenario, did not give rise to any detectable transfer of DNA. Although we were unable to detect any transformation events in our experiment, it cannot be ruled out that this could happen in the GI tract. However, since several steps are required before expression of plant-derived DNA in intestinal bacteria, we believe this is unlikely, and antibiotic resistance development in this environment is more in danger by the massive use of antibiotics than the consumption of GM food harbouring antibiotic resistance genes
Effects of apples and specific apple components on the cecal environment of conventional rats: role of apple pectin
<p>Abstract</p> <p>Background</p> <p>Our study was part of the large European project ISAFRUIT aiming to reveal the biological explanations for the epidemiologically well-established health effects of fruits. The objective was to identify effects of apple and apple product consumption on the composition of the cecal microbial community in rats, as well as on a number of cecal parameters, which may be influenced by a changed microbiota.</p> <p>Results</p> <p>Principal Component Analysis (PCA) of cecal microbiota profiles obtained by PCR-DGGE targeting bacterial 16S rRNA genes showed an effect of whole apples in a long-term feeding study (14 weeks), while no effects of apple juice, purée or pomace on microbial composition in cecum were observed. Administration of either 0.33 or 3.3% apple pectin in the diet resulted in considerable changes in the DGGE profiles.</p> <p>A 2-fold increase in the activity of beta-glucuronidase was observed in animals fed with pectin (7% in the diet) for four weeks, as compared to control animals (P < 0.01). Additionally, the level of butyrate measured in these pectin-fed animal was more than double of the corresponding level in control animals (P < 0.01). Sequencing revealed that DGGE bands, which were suppressed in pectin-fed rats, represented Gram-negative anaerobic rods belonging to the phylum <it>Bacteroidetes</it>, whereas bands that became more prominent represented mainly Gram-positive anaerobic rods belonging to the phylum <it>Firmicutes</it>, and specific species belonging to the <it>Clostridium </it>Cluster XIVa.</p> <p>Quantitative real-time PCR confirmed a lower amount of given <it>Bacteroidetes </it>species in the pectin-fed rats as well as in the apple-fed rats in the four-week study (P < 0.05). Additionally, a more than four-fold increase in the amount of <it>Clostridium coccoides </it>(belonging to Cluster XIVa), as well as of genes encoding butyryl-coenzyme A CoA transferase, which is involved in butyrate production, was detected by quantitative PCR in fecal samples from the pectin-fed animals.</p> <p>Conclusions</p> <p>Our findings show that consumption of apple pectin (7% in the diet) increases the population of butyrate- and β-glucuronidase producing <it>Clostridiales</it>, and decreases the population of specific species within the <it>Bacteroidetes </it>group in the rat gut. Similar changes were not caused by consumption of whole apples, apple juice, purée or pomace.</p
- …