285 research outputs found

    Tunnelling defect nanoclusters in hcp 4He crystals: alternative to supersolidity

    Full text link
    A simple model based on the concept of resonant tunnelling clusters of lattice defects is used to explain the low temperature anomalies of hcp 4He crystals (mass decoupling from a torsional oscillator, shear modulus anomaly, dissipation peaks, heat capacity peak). Mass decoupling is a result of an internal Josephson effect: mass supercurrent inside phase coherent tunnelling clusters. Quantitative results are in reasonable agreement with experiments.Comment: 13 pages, 5 figure

    Mix design considerations of foamed bitumen mixtures with reclaimed asphalt pavement material

    Get PDF
    In the present work, a mix design parametric study was carried out with the aim of proposing a practical and consistent mix design procedure for foamed bitumen mixtures (FBMs). The mix design parameters that were adopted in the study are mixing and compaction water content (MWC), compaction effort using a gyratory compactor and aggregate temperature. This parametric study was initially carried out on FBMs with virgin limestone aggregate without reclaimed asphalt pavement (RAP) material and a mix design procedure was proposed. This proposed methodology was also found to apply to FBMs with RAP. A detailed consideration was also given to characterising the RAP material so as to understand its contribution to the mechanical properties of FBMs. Optimum MWC was achieved by optimising mechanical properties such as indirect tensile stiffness modulus and indirect tensile strength (ITS-dry and ITS-wet). A rational range of 75–85% of optimum water content obtained by the modified Proctor test was found to be the optimum range of MWC that gives optimum mechanical properties for FBMs. It was also found that the presence of RAP influenced the design foamed bitumen content, which means that treating RAP as black rock in FBM mix design is not appropriate. To study the influence of bitumen and water during compaction, modified Proctor compaction and gyratory compaction were employed on mixes with varying amounts of water and bitumen. By this, the work also evaluated the validity of the total fluid (water + bitumen) concept that is widely used in bitumen–emulsion-treated mixes, and found it not to be applicable

    An Anglo-Saxon execution cemetery at Walkington Wold, Yorkshire

    Get PDF
    This paper presents a re-evaluation of a cemetery excavated over 30 years ago at Walkington Wold in east Yorkshire. The cemetery is characterized by careless burial on diverse alignments, and by the fact that most of the skeletons did not have associated crania. The cemetery has been variously described as being the result of an early post-Roman massacre, as providing evidence for a ‘Celtic’ head cult or as an Anglo-Saxon execution cemetery. In order to resolve the matter, radiocarbon dates were acquired and a re-examination of the skeletal remains was undertaken. It was confirmed that the cemetery was an Anglo-Saxon execution cemetery, the only known example from northern England, and the site is set into its wider context in the paper

    Lattice fractional Laplacian and its continuum limit kernel on the finite cyclic chain

    Get PDF
    The aim of this paper is to deduce a discrete version of the fractional Laplacian in matrix form defined on the 1D periodic (cyclically closed) linear chain of finite length. We obtain explicit expressions for this fractional Laplacian matrix and deduce also its periodic continuum limit kernel. The continuum limit kernel gives an exact expression for the fractional Laplacian (Riesz fractional derivative) on the finite periodic string. In this approach we introduce two material parameters, the particle mass μ and a frequency Ωα. The requirement of finiteness of the the total mass and total elastic energy in the continuum limit (lattice constant h → 0) leads to scaling relations for the two parameters, namely μ ∼ h and View the MathML source. The present approach can be generalized to define lattice fractional calculus on periodic lattices in full analogy to the usual ‘continuous’ fractional calculus

    A glassy contribution to the heat capacity of hcp 4^4He solids

    Full text link
    We model the low-temperature specific heat of solid 4^4He in the hexagonal closed packed structure by invoking two-level tunneling states in addition to the usual phonon contribution of a Debye crystal for temperatures far below the Debye temperature, T<ΘD/50T < \Theta_D/50. By introducing a cutoff energy in the two-level tunneling density of states, we can describe the excess specific heat observed in solid hcp 4^4He, as well as the low-temperature linear term in the specific heat. Agreement is found with recent measurements of the temperature behavior of both specific heat and pressure. These results suggest the presence of a very small fraction, at the parts-per-million (ppm) level, of two-level tunneling systems in solid 4^4He, irrespective of the existence of supersolidity.Comment: 11 pages, 4 figure

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure

    Risk factors associated with Campylobacter jejuni infections in Curacao, Netherlands Antilles

    Get PDF
    A steady increase in the incidence of Guillain-Barre syndrome (GBS) with a seasonal preponderance, almost exclusively related to Campylobacter jejuni, and a rise in the incidence of laboratory-confirmed Campylobacter enteritis have been reported from Curacao, Netherlands Antilles. We therefore investigated possible risk factors associated with diarrhea due to epidemic C. jejuni. Typing by pulsed-field gel electrophoresis identified four epidemic clones which accounted for almost 60% of the infections. One hundred six cases were included in a case-control study. Infections with epidemic clones were more frequently observed in specific districts in Willemstad, the capital of Curacao. One of these clones caused infections during the rainy season only and was associated with the presence of a deep well around the house. Two out of three GBS-related C. jejuni isolates belonged to an epidemic clone. The observations presented point toward water as a possible source of Campylobacter infections

    IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital- and communityacquired pathogen, but the mechanisms underlying host-defense to MRSA remain poorly understood. Here, we investigated the role of IL-21 in this process. When administered intratracheally into wild-type mice, IL-21 induced granzymes and augmented clearance of pulmonary MRSA but not when neutrophils were depleted or a granzyme B inhibitor was added. Correspondingly, IL-21 induced MRSA killing by human peripheral blood neutrophils. Unexpectedly, however, basal MRSA clearance was also enhanced when IL-21 signaling was blocked, both in Il21r KO mice and in wild-type mice injected with IL-21R-Fc fusion-protein. This correlated with increased type I interferon and an IFN-related gene signature, and indeed antiIFNAR1 treatment diminished MRSA clearance in these animals. Moreover, we found that IFNb induced granzyme B and promoted MRSA clearance in a granzyme B-dependent fashion. These results reveal an interplay between IL-21 and type I IFN in the innate immune response to MRS

    Dual dean entrainment with volume ratio modulation for efficient droplet co-encapsulation: Extreme single-cell indexing

    Get PDF
    The future of single cell diversity screens involves ever-larger sample sizes, dictating the need for higher throughput methods with low analytical noise to accurately describe the nature of the cellular system. Current approaches are limited by the Poisson statistic, requiring dilute cell suspensions and associated losses in throughput. In this contribution, we apply Dean entrainment to both cell and bead inputs, defining different volume packets to effect efficient co-encapsulation. Volume ratio scaling was explored to identify optimal conditions. This enabled the co-encapsulation of single cells with reporter beads at rates of ∼1 million cells per hour, while increasing assay signal-to-noise with cell multiplet rates of ∼2.5% and capturing ∼70% of cells. The method, called Pirouette coupling, extends our capacity to investigate biological systems.Jack Harrington, Luis Blay Esteban, Jonathan Butement, Andres F. Vallejo, Simon I. R. Lane, Bhavwanti Sheth, Maaike S. A. Jongen, Rachel Parker, Patrick S. Stumpf, Rosanna C. G. Smith, Ben D. MacArthur, Matthew J. J. Rose-Zerilli, Marta E. Polak, Tim Underwood and Jonathan Wes

    Experimental Observation of Differences in the Dynamic Response of Newtonian and Viscoelastic Fluids

    Full text link
    In this paper we present an experimental study of the dynamic responses of a Newtonian fluid and a Maxwellian fluid under an oscillating pressure gradient. We use laser Doppler anemometry in order to determine the velocity of each fluid inside a cylindrical tube. In the case of the Newtonian fluid, the dissipative nature is observed and the response obeys the Zhou and Sheng universality (PRB 39, 12027 (1989)). In the dynamic response of the Maxwellian fluid an enhancement at the frequencies predicted by the corresponding theory (PRE 58, 6323 (1998)) is observed.Comment: 5 pages, 4 Figures, paper to be published in Phys. Rev.
    • …
    corecore