144 research outputs found

    On-line PD detection and localization in cross-bonded HV cable systems

    Get PDF
    This paper addresses the detection and localization of partial discharge (PD) in crossbonded (CB) high voltage (HV) cables. A great deal has been published in recent years on PD based cable insulation condition monitoring, diagnostics and localization in medium voltage (MV) and high voltage (HV) cables. The topic of pulse propagation and PD source localization in CB HV cable systems has yet to be significantly investigated. The main challenge to PD monitoring of CB HV cables is as a result of the interconnectedness of the sheaths of the three single phase cables. The cross-bonding of the sheaths makes it difficult to localize which of the three phases a PD signal has emanated from. Co-axial cables are used to connect cable sheaths to cable link boxes, for ease of installation and protection against moisture. A second challenge is, therefore, the coupling effect when a PD pulse propagates in HV cable joints and the co-axial cables, making PD detection and localization more complex. The paper presents experimental investigations into PD pulse coupling between the cable center conductor and the sheath and the behavior of PD pulse propagation in CB HV cables. It proposes a model to describe PD pulse propagation in a CB HV cable system to allow monitoring and localization, and also presents the knowledge rules required for PD localization in CB HV cable systems

    Partial discharge pulse propagation in power cable and partial discharge monitoring system

    Get PDF
    Partial discharge (PD) based condition monitoring has been widely applied to power cables. However, difficulties in interpretation of measurement results (location and criticality) remain to be tackled. This paper aims to develop further knowledge in PD signal propagation in power cables and attenuation by the PD monitoring system devices to address the localization and criticality issues. As on-line or in-service PD monitoring sensors commonly comprise of a high frequency current transformer (HFCT) and a high-pass filter, the characteristics of detected PD pulses depend on the attenuation of the cable, the HFCT used and the filter applied. Simulation of pulse propagation in a cable and PD monitoring system are performed, based on analyses in the frequency domain using the concept of transfer functions. Results have been verified by laboratory experiments and using on-site PD measurements. The knowledge gained from the research on the change in pulse characteristics propagating in a cable and through a PD detection system can be very useful to PD denoising and for development of a PD localization technique

    Analysis of significant factors on cable failure using the Cox proportional hazard model

    Get PDF
    This paper proposes the use of the Cox proportional hazard model (Cox PHM), a statistical model, for the analysis of early-failure data associated with power cables. The Cox PHM analyses simultaneously a set of covariates and identifies those which have significant effects on the cable failures. In order to demonstrate the appropriateness of the model, relevant historical failure data related to medium voltage (MV, rated at 10 kV) distribution cables and High Voltage (HV, 110 kV and 220 kV) transmission cables have been collected from a regional electricity company in China. Results prove that the model is more robust than the Weibull distribution, in that failure data does not have to be homogeneous. Results also demonstrate that the method can single out a case of poor manufacturing quality with a particular cable joint provider by using a statistical hypothesis test. The proposed approach can potentially help to resolve any legal dispute that may arise between a manufacturer and a network operator, in addition to providing guidance for improving future practice in cable procurement, design, installations and maintenance

    Systematic review on the treatment of pentoxifylline in patients with non-alcoholic fatty liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As an anti-TNF agent that targets inflammatory process directly, Pentoxifylline has been investigated for treatment of NASH in individual studies and pilot trials for years. We summarized the available information and generating hypotheses for future research.</p> <p>Data Sources</p> <p>Google, Cochrane, MEDLINE, and EMBASE and the <it>Chinese Biomedical </it>data bases for studies restricted to pentoxifylline treatment in humans with NAFLD in all languages until June 2010. Six studies (2 randomized, double-blind, placebo-controlled trials; 4 prospective cohort studies) extracted from 11604 references.</p> <p>Results</p> <p>Pentoxifylline-treated patients showed a significant decrease AST (n = 37, <it>P </it>= 0.01) and ALT (n = 50, <it>P </it>= 0.03), but no significant effect on IL-6 (n = 36, <it>P </it>= 0.33) and TNF-α (n = 68, <it>P </it>= 0.26) compared with Placebo or UDCA-controlled groups. Improvement in one or more histological variables was reported in two trails, only 1 study showed a reduction in of one or two points in fibrosis stage.</p> <p>Limitations</p> <p>The trails did not consistently report all of the outcomes of interest. Sample sizes (117 patients totally) were small and only 2 out of 6 studies had a randomized, controlled design.</p> <p>Conclusion</p> <p>Pentoxifylline reduce AST and ALT levels and may improve liver histological scores in patients with NALFD/NASH, but did not appear to affect cytokines. Large, prospective, and well-designed randomized, controlled studies are needed to address this issue. Novel therapeutic targets for activation of inflammatory signaling pathways by fat also merit investigation.</p

    High quality and wafer-scale cubic silicon carbide single crystals

    Full text link
    Silicon carbide (SiC) is an important semiconductor material for fabricating power electronic devices that exhibit higher switch frequency, lower energy loss and substantial reduction both in size and weight in comparison with its Si-based counterparts1-4. Currently, most devices, such as metal-oxide-semiconductor field effect transistors, which are core devices used in electric vehicles, photovoltaic industry and other applications, are fabricated on a hexagonal polytype 4H-SiC because of its commercial availability5. Cubic silicon carbide (3C-SiC), the only cubic polytype, has a moderate band gap of 2.36 eV at room-temperature, but a superior mobility and thermal conduction than 4H-SiC4,6-11. Moreover, the much lower concentration of interfacial traps between insulating oxide gate and 3C-SiC helps fabricate reliable and long-life devices7-10,12-14. The growth of 3C-SiC crystals, however, has remained a challenge up to now despite of decades-long efforts by researchers because of its easy transformation into other polytypes during growth15-19, limiting the 3C-SiC based devices. Here, we report that 3C-SiC can be made thermodynamically favored from nucleation to growth on a 4H-SiC substrate by top-seeded solution growth technique(TSSG), beyond what's expected by classic nucleation theory. This enables the steady growth of quality and large sized 3C-SiC crystals (2~4-inch in diameter and 4.0~10.0 mm in thickness) sustainable. Our findings broaden the mechanism of hetero-seed crystal growth and provide a feasible route to mass production of 3C-SiC crystals,offering new opportunities to develop power electronic devices potentially with better performances than those based on 4H-SiC.Comment: 17 pages, 4 figure

    Critical Roles of STAT3 in β-Adrenergic Functions in the Heart

    Get PDF
    BACKGROUND: β-Adrenergic receptors (βARs) play paradoxical roles in the heart. On one hand, βARs augment cardiac performance to fulfill the physiological demands, but on the other hand, prolonged activations of βARs exert deleterious effects that result in heart failure. The signal transducer and activator of transcription 3 (STAT3) plays a dynamic role in integrating multiple cytokine signaling pathways in a number of tissues. Altered activation of STAT3 has been observed in failing hearts in both human patients and animal models. Our objective is to determine the potential regulatory roles of STAT3 in cardiac βAR-mediated signaling and function. METHODS AND RESULTS: We observed that STAT3 can be directly activated in cardiomyocytes by β-adrenergic agonists. To follow up this finding, we analyzed βAR function in cardiomyocyte-restricted STAT3 knockouts and discovered that the conditional loss of STAT3 in cardiomyocytes markedly reduced the cardiac contractile response to acute βAR stimulation, and caused disengagement of calcium coupling and muscle contraction. Under chronic β-adrenergic stimulation, Stat3cKO hearts exhibited pronounced cardiomyocyte hypertrophy, cell death, and subsequent cardiac fibrosis. Biochemical and genetic data supported that Gαs and Src kinases are required for βAR-mediated activation of STAT3. Finally, we demonstrated that STAT3 transcriptionally regulates several key components of βAR pathway, including β1AR, protein kinase A, and T-type Ca(2+) channels. CONCLUSIONS: Our data demonstrate for the first time that STAT3 has a fundamental role in βAR signaling and functions in the heart. STAT3 serves as a critical transcriptional regulator for βAR-mediated cardiac stress adaption, pathological remodeling, and heart failure

    The Reproducibility of Lists of Differentially Expressed Genes in Microarray Studies

    Get PDF
    Reproducibility is a fundamental requirement in scientific experiments and clinical contexts. Recent publications raise concerns about the reliability of microarray technology because of the apparent lack of agreement between lists of differentially expressed genes (DEGs). In this study we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the lists become much more reproducible, especially when fewer genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected mathematical consequence of the high variability of the t-values. We recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to generate more reproducible DEG lists. The FC criterion enhances reproducibility while the P criterion balances sensitivity and specificity
    • …
    corecore