966 research outputs found

    Anti-inflammatory activity and chemical composition of the essential oils from Senecio flammeus

    Get PDF
    Many species from Senecio genus have been used in traditional medicine, and their pharmacological activities have been demonstrated. This study investigated the chemical composition and anti-inflammatory activities of essential oils from Senecio flammeus. A total of 48 components representing 98.41 % of the total oils were identified. The main compounds in the oils were α-farnesene (11.26 %), caryophyllene (8.69 %), n-hexadecanoic acid (7.23 %), and α-pinene (6.36 %). The anti-inflammatory activity of the essential oils was evaluated in rodents (10–90 mg/kg bw) in classical models of inflammation [carrageenan-induced paw edema, 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced ear edema, and cotton pellet-induced granuloma]. The essential oils at doses of 10, 30, and 90 mg/kg bw significantly reduced carrageenan-induced paw edema by 17.42 % (P < 0.05), 52.90 % (P < 0.05), and 66.45 % (P < 0.05) 4 h after carrageenan injection, respectively, and significantly reduced myeloperoxidase activity (P < 0.05). The essential oils (10, 30, and 90 mg/kg) also produced asignificant dose-dependent response to reduce TPA-induced ear edema by 20.27 % (P < 0.05), 33.06 % (P < 0.05), and 53.90 % (P < 0.05), respectively. The essential oils produced significant dose-response anti-inflammatory activity against cotton pellet-induced granuloma that peaked at the highest dose of 90 mg/kg (49.08 % wet weight and 47.29 % dry weight). Results demonstrate that the essential oils of S. flammeus were effective in the treatment of both acute and chronic inflammatory conditions, there by supporting the traditional use of this herb

    Destruction of Neel order and appearance of superconductivity in electron-doped cuprates by oxygen annealing process

    Full text link
    We use thermodynamic and neutron scattering measurements to study the effect of oxygen annealing on the superconductivity and magnetism in Pr0.88_{0.88}LaCe0.12_{0.12}CuO4δ_{4-\delta}. Although the transition temperature TcT_c measured by susceptibility and superconducting coherence length increase smoothly with gradual oxygen removal from the annealing process, bulk superconductivity, marked by a specific heat anomaly at TcT_c and the presence of a neutron magnetic resonance, only appears abruptly when TcT_c is close to the largest value. These results suggest that the effect of oxygen annealing must be first determined in order to establish a Ce-doping dependence of antiferromagnetism and superconductivity phase diagram for electron-doped copper oxides.Comment: 5 pages, 4 figures, accepted by Phys. Rev.

    Anti-inflammatory effect of selagin-7-O-(6''-O-acetyl-)-ß-D-glycoside isolated from Cancrinia discoidea on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells

    Get PDF
    Selagin-7-O-(6''-O-acetyl-)-β-D-glycoside, a new flavone glycoside isolated from Cancrinia discoidea, is known to exhibit anti-inflammatory activity in vivo. This study aimed to investigate the protection of this flavone glycoside on inflammation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The effects of selagin-7-O-(6''-O-acetyl-)-β-D-glycoside on inflammatory cytokines and signaling pathways were analyzed by enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and western blot. Results show that selagin-7-O-(6''-O-acetyl-)-β-D-glycoside protected LPS-induced macrophage RAW 264.7 cells from injury. The flavone glycoside markedly inhibited the LPS-induced production of tumor necrosis factor-α, interleukin-1β, and interleukin-6 and increased interleukin-10 release in a concentration-dependent manner. Furthermore, treatment with the flavone glycoside decreased nitric oxide and prostaglandin E2 in LPS-challenged RAW 264.7 cells. These decreases were associated with the down-regulation of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and nuclear factor kappa B (NF-κB) activity. These findings suggest that the anti-inflammatory effects of selagin-7-O-(6''-O-acetyl-)-β-D-glycoside were associated with the adjustment of in flammatory cytokines, and attributed to the down-regulation of NF-κB and consequent suppression of the expression of iNOS and COX-2

    (E)-3-Methyl-5-(4-methyl­phen­oxy)-1-phenyl-1H-pyrazole-4-carbaldehyde O-[(2-chloro-1,3-thia­zol-5-yl)meth­yl]oxime

    Get PDF
    In the title compound, C22H19ClN4O2S, the planes of the benzene ring, the substituted phenyl ring and the thia­zole ring make dihedral angles of 18.4 (3), 88.9 (2) and 63.0 (3)°, respectively, with the pyrazole ring

    Genome-wide search for the genes accountable for the induced resistance to HIV-1 infection in activated CD4+ T cells: apparent transcriptional signatures, co-expression networks and possible cellular processes

    Get PDF
    BACKGROUND: Upon co-stimulation with CD3/CD28 antibodies, activated CD4 + T cells were found to lose their susceptibility to HIV-1 infection, exhibiting an induced resistant phenotype. This rather unexpected phenomenon has been repeatedly confirmed but the underlying cell and molecular mechanisms are still unknown. METHODS: We first replicated the reported system using the specified Dynal beads with PHA/IL-2-stimulated and un-stimulated cells as controls. Genome-wide expression and analysis were then performed by using Agilent whole genome microarrays and established bioinformatics tools. RESULTS: We showed that following CD3/CD28 co-stimulation, a homogeneous population emerged with uniform expression of activation markers CD25 and CD69 as well as a memory marker CD45RO at high levels. These cells differentially expressed 7,824 genes when compared with the controls on microarrays. Series-Cluster analysis identified 6 distinct expression profiles containing 1,345 genes as the representative signatures in the permissive and resistant cells. Of them, 245 (101 potentially permissive and 144 potentially resistant) were significant in gene ontology categories related to immune response, cell adhesion and metabolism. Co-expression networks analysis identified 137 “key regulatory” genes (84 potentially permissive and 53 potentially resistant), holding hub positions in the gene interactions. By mapping these genes on KEGG pathways, the predominance of actin cytoskeleton functions, proteasomes, and cell cycle arrest in induced resistance emerged. We also revealed an entire set of previously unreported novel genes for further mining and functional validation. CONCLUSIONS: This initial microarray study will stimulate renewed interest in exploring this system and open new avenues for research into HIV-1 susceptibility and its reversal in target cells, serving as a foundation for the development of novel therapeutic and clinical treatments

    Exclusive Semileptonic Rare Decays BK()l+lB \to K^{(*)} l^+ l^- in a SUSY SO(10) GUT

    Full text link
    In the SUSY SO(10) GUT context, we study the exclusive processes BK()l+l(l=μ,τ)B \to K^{(*)} l^+l^-(l=\mu,\tau). Using the Wilson coefficients of relevant operators including the new operators Q1,2()Q_{1,2}^{(\prime)} which are induced by neutral Higgs boson (NHB) penguins, we evaluate some possible observables associated with these processes like, the invariant mass spectrum (IMS), lepton pair forward backward asymmetry (FBA), lepton polarization asymmetries etc. In this model the contributions from Wilson coefficients CQ1,2C_{Q_{1,2}}^\prime, among new contributions, are dominant. Our results show that the NHB effects are sensitive to the FBA, dL/ds^dL/d\hat{s}, and dT/ds^dT/d\hat{s} of BK()τ+τB \to K^{(*)} \tau^+ \tau^- decay, which are expected to be measured in B factories, and the average of the normal polarization dN/ds^dN/d\hat{s} can reach several percent for BKμ+μB \to K \mu^+ \mu^- and it is 0.05 or so for BKτ+τB\to K \tau^+\tau^-, which could be measured in the future super B factories and provide a useful information to probe new physics and discriminate different models.Comment: 16 pages,7 figure
    corecore