1,394 research outputs found
A study of energy correction for the electron beam data in the BGO ECAL of the DAMPE
The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at
searching for dark matter indirectly by measuring the spectra of photons,
electrons and positrons originating from deep space. The BGO electromagnetic
calorimeter is one of the key sub-detectors of the DAMPE, which is designed for
high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In
this paper, some methods for energy correction are discussed and tried, in
order to reconstruct the primary energy of the incident electrons. Different
methods are chosen for the appropriate energy ranges. The results of Geant4
simulation and beam test data (at CERN) are presented
Dynamic Causal Disentanglement Model for Dialogue Emotion Detection
Emotion detection is a critical technology extensively employed in diverse
fields. While the incorporation of commonsense knowledge has proven beneficial
for existing emotion detection methods, dialogue-based emotion detection
encounters numerous difficulties and challenges due to human agency and the
variability of dialogue content.In dialogues, human emotions tend to accumulate
in bursts. However, they are often implicitly expressed. This implies that many
genuine emotions remain concealed within a plethora of unrelated words and
dialogues.In this paper, we propose a Dynamic Causal Disentanglement Model
based on hidden variable separation, which is founded on the separation of
hidden variables. This model effectively decomposes the content of dialogues
and investigates the temporal accumulation of emotions, thereby enabling more
precise emotion recognition. First, we introduce a novel Causal Directed
Acyclic Graph (DAG) to establish the correlation between hidden emotional
information and other observed elements. Subsequently, our approach utilizes
pre-extracted personal attributes and utterance topics as guiding factors for
the distribution of hidden variables, aiming to separate irrelevant ones.
Specifically, we propose a dynamic temporal disentanglement model to infer the
propagation of utterances and hidden variables, enabling the accumulation of
emotion-related information throughout the conversation. To guide this
disentanglement process, we leverage the ChatGPT-4.0 and LSTM networks to
extract utterance topics and personal attributes as observed
information.Finally, we test our approach on two popular datasets in dialogue
emotion detection and relevant experimental results verified the model's
superiority
Dexterous In-Hand Manipulation of Slender Cylindrical Objects through Deep Reinforcement Learning with Tactile Sensing
Continuous in-hand manipulation is an important physical interaction skill,
where tactile sensing provides indispensable contact information to enable
dexterous manipulation of small objects. This work proposed a framework for
end-to-end policy learning with tactile feedback and sim-to-real transfer,
which achieved fine in-hand manipulation that controls the pose of a thin
cylindrical object, such as a long stick, to track various continuous
trajectories through multiple contacts of three fingertips of a dexterous robot
hand with tactile sensor arrays. We estimated the central contact position
between the stick and each fingertip from the high-dimensional tactile
information and showed that the learned policies achieved effective
manipulation performance with the processed tactile feedback. The policies were
trained with deep reinforcement learning in simulation and successfully
transferred to real-world experiments, using coordinated model calibration and
domain randomization. We evaluated the effectiveness of tactile information via
comparative studies and validated the sim-to-real performance through
real-world experiments.Comment: 10 pages, 12 figures, submitted to Transaction on Mechatronic
AniPortraitGAN: Animatable 3D Portrait Generation from 2D Image Collections
Previous animatable 3D-aware GANs for human generation have primarily focused
on either the human head or full body. However, head-only videos are relatively
uncommon in real life, and full body generation typically does not deal with
facial expression control and still has challenges in generating high-quality
results. Towards applicable video avatars, we present an animatable 3D-aware
GAN that generates portrait images with controllable facial expression, head
pose, and shoulder movements. It is a generative model trained on unstructured
2D image collections without using 3D or video data. For the new task, we base
our method on the generative radiance manifold representation and equip it with
learnable facial and head-shoulder deformations. A dual-camera rendering and
adversarial learning scheme is proposed to improve the quality of the generated
faces, which is critical for portrait images. A pose deformation processing
network is developed to generate plausible deformations for challenging regions
such as long hair. Experiments show that our method, trained on unstructured 2D
images, can generate diverse and high-quality 3D portraits with desired control
over different properties.Comment: SIGGRAPH Asia 2023. Project Page:
https://yuewuhkust.github.io/AniPortraitGAN
Real-time Multi-person Eyeblink Detection in the Wild for Untrimmed Video
Real-time eyeblink detection in the wild can widely serve for fatigue
detection, face anti-spoofing, emotion analysis, etc. The existing research
efforts generally focus on single-person cases towards trimmed video. However,
multi-person scenario within untrimmed videos is also important for practical
applications, which has not been well concerned yet. To address this, we shed
light on this research field for the first time with essential contributions on
dataset, theory, and practices. In particular, a large-scale dataset termed
MPEblink that involves 686 untrimmed videos with 8748 eyeblink events is
proposed under multi-person conditions. The samples are captured from
unconstrained films to reveal "in the wild" characteristics. Meanwhile, a
real-time multi-person eyeblink detection method is also proposed. Being
different from the existing counterparts, our proposition runs in a one-stage
spatio-temporal way with end-to-end learning capacity. Specifically, it
simultaneously addresses the sub-tasks of face detection, face tracking, and
human instance-level eyeblink detection. This paradigm holds 2 main advantages:
(1) eyeblink features can be facilitated via the face's global context (e.g.,
head pose and illumination condition) with joint optimization and interaction,
and (2) addressing these sub-tasks in parallel instead of sequential manner can
save time remarkably to meet the real-time running requirement. Experiments on
MPEblink verify the essential challenges of real-time multi-person eyeblink
detection in the wild for untrimmed video. Our method also outperforms existing
approaches by large margins and with a high inference speed.Comment: Accepted by CVPR 202
- …