89 research outputs found

    Severe Cholestasis Predicts Recurrent Primary Sclerosing Cholangitis Following Liver Transplantation

    Get PDF
    Copyright \ua9 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology. Background & Aims: Primary sclerosing cholangitis (PSC) may reoccur following liver transplantation (LT) and the diagnosis established once imaging studies demonstrate the diagnostic cholangiographic appearance. To evaluate whether the development of recurrent PSC (rPSC) is associated with cholestasis soon after LT, we studied whether changes in hepatic biochemistry within the first 12 months were linked with the development of rPSC and graft loss. Methods: We conducted a retrospective cohort analysis of 158 transplant recipients with PSC in Canada, and 549 PSC transplant recipients from the United Kingdom. We evaluated serum liver tests within 12 months after LT and the subsequent development of a cholangiographic diagnosis of rPSC as a time-dependent covariate using Cox regression. Severe cholestasis was defined as either alkaline phosphatase> 3xupper limit of normal or total bilirubin> 100 mol/L. Results: Patients who developed rPSC were more likely to have severe cholestasis versus those without at 3 months (20.5% vs 8.2%, p=0.011), at 6 months (17.9% vs. 10.0%, p=0.026) and 12 months (15.4% vs. 7.8%, p=0.051) in the Canadian cohort and at 12 months in the UK cohort (27.9% vs. 12.6%, p<0.0001). By multivariable analysis, development of severe cholestasis in the Canadian cohort at 3 months (HR=2.41, p=0.046) and in the UK cohort at 12 months (HR=3.141, p<0.0001) were both associated with rPSC. Severe cholestasis at 3 months in the Canadian cohort was predictive of graft loss (HR=3.88, p=0.0001). Conclusions: The development of cholestasis within 3 to 12 months following LT was predictive of rPSC and graft loss

    Induction of Noxa-Mediated Apoptosis by Modified Vaccinia Virus Ankara Depends on Viral Recognition by Cytosolic Helicases, Leading to IRF-3/IFN-Ξ²-Dependent Induction of Pro-Apoptotic Noxa

    Get PDF
    Viral infection is a stimulus for apoptosis, and in order to sustain viral replication many viruses are known to carry genes encoding apoptosis inhibitors. F1L, encoded by the orthopoxvirus modified vaccinia virus Ankara (MVA) has a Bcl-2-like structure. An MVA mutant lacking F1L (MVAΞ”F1L) induces apoptosis, indicating that MVA infection activates and F1L functions to inhibit the apoptotic pathway. In this study we investigated the events leading to apoptosis upon infection by MVAΞ”F1L. Apoptosis largely proceeded through the pro-apoptotic Bcl-2 family protein Bak with some contribution from Bax. Of the family of pro-apoptotic BH3-only proteins, only the loss of Noxa provided substantial protection, while the loss of Bim had a minor effect. In mice, MVA preferentially infected macrophages and DCs in vivo. In both cell types wt MVA induced apoptosis albeit more weakly than MVAΞ”F1L. The loss of Noxa had a significant protective effect in macrophages, DC and primary lymphocytes, and the combined loss of Bim and Noxa provided strong protection. Noxa protein was induced during infection, and the induction of Noxa protein and apoptosis induction required transcription factor IRF3 and type I interferon signalling. We further observed that helicases RIG-I and MDA5 and their signalling adapter MAVS contribute to Noxa induction and apoptosis in response to MVA infection. RNA isolated from MVA-infected cells induced Noxa expression and apoptosis when transfected in the absence of viral infection. We thus here describe a pathway leading from the detection of viral RNA during MVA infection by the cytosolic helicase-pathway, to the up-regulation of Noxa and apoptosis via IRF3 and type I IFN signalling

    Increased transcriptional activity of prostate-specific antigen in the presence of TNP-470, an angiogenesis inhibitor

    Get PDF
    Prostate-specific antigen, PSA, is regarded as a reliable surrogate marker for androgen-independent prostate cancer (AIPC). Concern has been raised that investigational agents may affect PSA secretion without altering tumour growth or volume. In a phase I trial, several patients with AIPC had elevated serum PSA levels while receiving TNP-470 that reversed upon discontinuation. TNP-470 inhibits capillary growth in several angiogenesis models. These observations prompted us to determine if TNP-470, or its metabolite, AGM-1883, altered PSA secretion. Intracellular protein and transcriptional levels of PSA and androgen receptor were also determined. The highest TNP-470 concentration produced a 40.6% decrease in cell number; AGM-1883 had minimal effects on cell viability. PSA secretion per cell was induced 1.1- to 1.5-fold following TNP-470 exposure. The same trend was observed for AGM-1883. PSA and AR were transcriptionally up-regulated within 30 min after exposure to TNP-470. PSA transcription was increased 1.4-fold, while androgen receptor (AR) transcription was induced 1.2-fold. The increased PSA transcriptional activity accounts for the increased PSA secretion. Increased AR transcription was also reflected at the protein level. In conclusion, TNP-470 and AGM-1883 both up-regulated PSA making clinical utilization of this surrogate marker problematic. Β© 1999 Cancer Research Campaig

    Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN

    Get PDF
    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.Comment: Invited talk at Pbar08 - Workshop on Cold Antimatter Plasmas and Application to Fundamental Physics, Okinawa, Japan, 2008. 14 pages, 8 figure

    Viral Control of Mitochondrial Apoptosis

    Get PDF
    Throughout the process of pathogen–host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus

    Who wants a slimmer body? The relationship between body weight status, education level and body shape dissatisfaction among young adults in Hong Kong

    Get PDF
    Background: Body shape dissatisfaction has been thought to have an indispensable impact on weight control behaviors. We investigated the prevalence of body shape dissatisfaction (BSD) and explored its association with weight status, education level and other determinants among young adults in Hong Kong. Methods. Information on anthropometry, BSD, and socio-demographics was collected from a random sample of 1205 young adults (611 men and 594 women) aged 18-27 in a community-based household survey. BSD was defined as a discrepancy between current and ideal body shape based on a figure rating scale. Cross-tabulations, homogeneity tests and logistic regression models were applied. Results: The percentages of underweight men and women were 16.5% and 34.9% respectively, and the corresponding percentages of being overweight or obese were 26.7% and 13.2% for men and women respectively. Three-quarters of young adults had BSD. Among women, 30.9% of those underweight and 75.5% of those with normal weight desired a slimmer body shape. Overweight men and underweight women with lower education level were more likely to have a mismatch between weight status and BSD than those with higher education level. After controlling for other determinants, underweight women were found to have a higher likelihood to maintain their current body shapes than other women. Men were found to be less likely to have a mismatch between weight status and BSD than women. Conclusions: Overweight and obesity in men and underweight in women were prevalent among Hong Kong young adults. Inappropriate body shape desire might predispose individuals to unhealthy weight loss or gain behaviors. Careful consideration of actual weight status in body shape desire is needed in health promotion and education, especially for underweight and normal weight women and those with a low education level. Β© 2011 Cheung et al; licensee BioMed Central Ltd.published_or_final_versio

    Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis

    Get PDF
    Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death

    Increased Inducible Nitric Oxide Synthase Expression in Organs Is Associated with a Higher Severity of H5N1 Influenza Virus Infection

    Get PDF
    BACKGROUND: The mechanisms of disease severity caused by H5N1 influenza virus infection remain somewhat unclear. Studies have indicated that a high viral load and an associated hyper inflammatory immune response are influential during the onset of infection. This dysregulated inflammatory response with increased levels of free radicals, such as nitric oxide (NO), appears likely to contribute to disease severity. However, enzymes of the nitric oxide synthase (NOS) family such as the inducible form of NOS (iNOS) generate NO, which serves as a potent anti-viral molecule to combat infection in combination with acute phase proteins and cytokines. Nevertheless, excessive production of iNOS and subsequent high levels of NO during H5N1 infection may have negative effects, acting with other damaging oxidants to promote excessive inflammation or induce apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: There are dramatic differences in the severity of disease between chickens and ducks following H5N1 influenza infection. Chickens show a high level of mortality and associated pathology, whilst ducks show relatively minor symptoms. It is not clear how this varying pathogenicty comes about, although it has been suggested that an overactive inflammatory immune response to infection in the chicken, compared to the duck response, may be to blame for the disparity in observed pathology. In this study, we identify and investigate iNOS gene expression in ducks and chickens during H5N1 influenza infection. Infected chickens show a marked increase in iNOS expression in a wide range of organs. Contrastingly, infected duck tissues have lower levels of tissue related iNOS expression. CONCLUSIONS/SIGNIFICANCE: The differences in iNOS expression levels observed between chickens and ducks during H5N1 avian influenza infection may be important in the inflammatory response that contributes to the pathology. Understanding the regulation of iNOS expression and its role during H5N1 influenza infection may provide insights for the development of new therapeutic strategies in the treatment of avian influenza infection

    Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions

    Get PDF
    Monkeypox virus (MPV) is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2) using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our results highlight the role of histones, actin, cell cycle regulators, and ion channels in MPV infection, and propose these host functions as attractive research focal points in identifying novel drug intervention sites
    • …
    corecore