2,059 research outputs found

    Classification of Arbitrary Multipartite Entangled States under Local Unitary Equivalence

    Full text link
    We propose a practical method for finding the canonical forms of arbitrary dimensional multipartite entangled states, either pure or mixed. By extending the technique developed in one of our recent works, the canonical forms for the mixed NN-partite entangled states are constructed where they have inherited local unitary symmetries from their corresponding N+1N+1 pure state counterparts. A systematic scheme to express the local symmetries of the canonical form is also presented, which provides a feasible way of verifying the local unitary equivalence for two multipartite entangled states.Comment: 22 pages; published in J. Phys. A: Math. Theo

    Quantum Anomalous Hall Effect in Graphene from Rashba and Exchange Effects

    Get PDF
    We investigate the possibility of realizing quantum anomalous Hall effect in graphene. We show that a bulk energy gap can be opened in the presence of both Rashba spin-orbit coupling and an exchange field. We calculate the Berry curvature distribution and find a non-zero Chern number for the valence bands and demonstrate the existence of gapless edge states. Inspired by this finding, we also study, by first principles method, a concrete example of graphene with Fe atoms adsorbed on top, obtaining the same result.Comment: 4 papges, 5 figure

    Five-dimensional generalized f(R)f(R) gravity with curvature-matter coupling

    Get PDF
    The generalized f(R)f(R) gravity with curvature-matter coupling in five-dimensional (5D) spacetime can be established by assuming a hypersurface-orthogonal spacelike Killing vector field of 5D spacetime, and it can be reduced to the 4D formulism of FRW universe. This theory is quite general and can give the corresponding results to the Einstein gravity, f(R)f(R) gravity with both no-coupling and non-minimal coupling in 5D spacetime as special cases, that is, we would give the some new results besides previous ones given by Ref.\cite{60}. Furthermore, in order to get some insight into the effects of this theory on the 4D spacetime, by considering a specific type of models with f1(R)=f2(R)=αRmf_{1}(R)=f_{2}(R)=\alpha R^{m} and B(Lm)=Lm=ρB(L_{m})=L_{m}=-\rho, we not only discuss the constraints on the model parameters mm, nn, but also illustrate the evolutionary trajectories of the scale factor a(t)a(t), the deceleration parameter q(t)q(t) and the scalar field ϵ(t)\epsilon(t), ϕ(t)\phi(t) in the reduced 4D spacetime. The research results show that this type of f(R)f(R) gravity models given by us could explain the current accelerated expansion of our universe without introducing dark energy.Comment: arXiv admin note: text overlap with arXiv:0912.4581, arXiv:gr-qc/0411066 by other author

    Functional characterization of a short peptidoglycan recognition protein from Chinese giant salamander (Andrias davidianus)

    Get PDF
    This work was supported by the National Natural Science Foundation of China (Grant no. 31302221, 31172408 and 31272666) and Jiangsu Province (Grant no. BK20171274 and BK2011418), and partially by the Opening Project of Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland (Grant no. K2016-08). QZ was supported by the “Qinglan” project of Jiangsu province of China.Peer reviewedPublisher PD

    Identification of miRNAs involved in pear fruit development and quality

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of small, endogenous RNAs that take part in regulating genes through mediating gene expressions at the post-transcriptional level in plants. Previous studies have reported miRNA identification in various plants ranging from model plants to perennial fruit trees. However, the role of miRNAs in pear (Pyrus bretschneideri) fruit development is not clear. Here, we investigated the miRNA profiles of pear fruits from different time stages during development with Illumina HiSeq 2000 platform and bioinformatics analysis. Quantitative real-time PCR was used to validate the expression levels of miRNAs. RESULTS: Both conserved and species-specific miRNAs in pear have been identified in this study. Total reads, ranging from 19,030,925 to 25,576,773, were obtained from six small RNA libraries constructed for different stages of fruit development after flowering. Comparative profiling showed that an average of 90 miRNAs was expressed with significant differences between various developmental stages. KEGG pathway analysis on 2,216 target genes of 188 known miRNAs and 1,127 target genes of 184 novel miRNAs showed that miRNAs are widely involved in the regulation of fruit development. Among these, a total of eleven miRNAs putatively participate in the pathway of lignin biosynthesis, nine miRNAs were identified to take part in sugar and acid metabolism, and MiR160 was identified to regulate auxin response factor. CONCLUSION: Comparative analysis of miRNAomes during pear fruit development is presented, and miRNAs were proved to be widely involved in the regulation of fruit development and formation of fruit quality, for example through lignin synthesis, sugar and acid metabolism, and hormone signaling. Combined with computational analysis and experimental confirmation, the research contributes valuable information for further functional research of microRNA in fruit development for pear and other species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-953) contains supplementary material, which is available to authorized users
    corecore