508 research outputs found

    Prioritization of Kidney Cell Types Highlights Myofibroblast Cells in Regulating Human Blood Pressure

    Get PDF
    INTRODUCTION: Blood pressure (BP) is a highly heritable trait with over 2000 underlying genomic loci identified to date. Although the kidney plays a key role, little is known about specific cell types involved in the genetic regulation of BP.METHODS: Here, we applied stratified linkage disequilibrium score (LDSC) regression to connect BP genome-wide association studies (GWAS) results to specific cell types of the mature human kidney. We used the largest single-stage BP genome-wide analysis to date, including up to 1,028,980 adults of European ancestry, and single-cell transcriptomic data from 14 mature human kidneys, with mean age of 41 years.RESULTS: Our analyses prioritized myofibroblasts and endothelial cells, among the total of 33 annotated cell type, as specifically involved in BP regulation (P &lt; 0.05/33, i.e., 0.001515). Enrichment of heritability for systolic BP (SBP) was observed in myofibroblast cells in mature human kidney cortex, and enrichment of heritability for diastolic BP (DBP) was observed in descending vasa recta and peritubular capillary endothelial cells as well as stromal myofibroblast cells. The new finding of myofibroblast, the significant cell type for both BP traits, was consistent in 8 replication efforts using 7 sets of independent data, including in human fetal kidney, in East-Asian (EAS) ancestry, using mouse single-cell RNA sequencing (scRNA-seq) data, and when using another prioritization method.CONCLUSION: Our findings provide a solid basis for follow-up studies to further identify genes and mechanisms in myofibroblast cells that underlie the regulation of BP.</p

    Genome-wide association study identifies _FUT8_ and _ESR2_ as co-regulators of a bi-antennary N-linked glycan A2 (GlcNAc~2~Man~3~GlcNAc~2~) in human plasma proteins

    Get PDF
    HPLC analysis of N-glycans quantified levels of the biantennary glycan (A2) in plasma proteins of 924 individuals. Subsequent genome-wide association study (GWAS) using 317,503 single nucleotide polymorphysms (SNP) identified two genetic loci influencing variation in A2: FUT 8 and ESR2. We demonstrate that human glycans are amenable to GWAS and their genetic regulation shows sex-specific effects with _FUT 8_ variants explaining 17.3% of the variance in pre-menopausal women, while _ESR2_ variants explained 6.0% of the variance in post-menopausal women

    Uncovering Networks from Genome-Wide Association Studies via Circular Genomic Permutation

    Get PDF
    Genome-wide association studies (GWAS) aim to detect single nucleotide polymorphisms (SNP) associated with trait variation. However, due to the large number of tests, standard analysis techniques impose highly stringent significance thresholds, leaving potentially associated SNPs undetected, and much of the trait genetic variation unexplained. Pathway- and network-based methodologies applied to GWAS aim to detect associations missed by standard single-marker approaches. The complex and non-random architecture of the genome makes it a challenge to derive an appropriate testing framework for such methodologies. We developed a rapid and simple permutation approach that uses GWAS SNP association results to establish the significance of pathway associations while accounting for the linkage disequilibrium structure of SNPs and the clustering of functionally related elements in the genome. All SNPs used in the GWAS are placed in a “circular genome” according to their location. Then the complete set of SNP association P values are permuted by rotation with respect to the genomic locations of the SNPs. Once these “simulated” P values are assigned, the joint gene P values are calculated using Fisher’s combination test, and the association of pathways is tested using the hypergeometric test. The circular genomic permutation approach was applied to a human genome-wide association dataset. The data consists of 719 individuals from the ORCADES study genotyped for ∼300,000 SNPs and measured for 51 traits ranging from physical to biochemical measurements. KEGG pathways (n = 225) were used as the sets of pathways to be tested. Our results demonstrate that the circular genomic permutations provide robust association P values. The non-permuted hypergeometric analysis generates ∼1400 pathway-trait combination results with an association P value more significant than P ≤ 0.05, whereas applying circular genomic permutation reduces the number of significant results to a more credible 40% of that value. The circular permutation software (“genomicper”) is available as an R package at http://cran.r-project.org/

    Comparative assessment of methods for estimating individual genome-wide homozygosity-by-descent from human genomic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide homozygosity estimation from genomic data is becoming an increasingly interesting research topic. The aim of this study was to compare different methods for estimating individual homozygosity-by-descent based on the information from human genome-wide scans rather than genealogies. We considered the four most commonly used methods and investigated their applicability to single-nucleotide polymorphism (SNP) data in both a simulation study and by using the human genotyped data. A total of 986 inhabitants from the isolated Island of Vis, Croatia (where inbreeding is present, but no pedigree-based inbreeding was observed at the level of F > 0.0625) were included in this study. All individuals were genotyped with the Illumina HumanHap300 array with 317,503 SNP markers.</p> <p>Results</p> <p>Simulation data suggested that multi-point FEstim is the method most strongly correlated to true homozygosity-by-descent. Correlation coefficients between the homozygosity-by-descent estimates were high but only for inbred individuals, with nearly absolute correlation between single-point measures.</p> <p>Conclusions</p> <p>Deciding who is really inbred is a methodological challenge where multi-point approaches can be very helpful once the set of SNP markers is filtered to remove linkage disequilibrium. The use of several different methodological approaches and hence different homozygosity measures can help to distinguish between homozygosity-by-state and homozygosity-by-descent in studies investigating the effects of genomic autozygosity on human health.</p

    Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus

    Get PDF
    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date

    Localising Loci underlying Complex Trait Variation Using Regional Genomic Relationship Mapping

    Get PDF
    The limited proportion of complex trait variance identified in genome-wide association studies may reflect the limited power of single SNP analyses to detect either rare causative alleles or those of small effect. Motivated by studies that demonstrate that loci contributing to trait variation may contain a number of different alleles, we have developed an analytical approach termed Regional Genomic Relationship Mapping that, like linkage-based family methods, integrates variance contributed by founder gametes within a pedigree. This approach takes advantage of very distant (and unrecorded) relationships, and this greatly increases the power of the method, compared with traditional pedigree-based linkage analyses. By integrating variance contributed by founder gametes in the population, our approach provides an estimate of the Regional Heritability attributable to a small genomic region (e.g. 100 SNP window covering ca. 1 Mb of DNA in a 300000 SNP GWAS) and has the power to detect regions containing multiple alleles that individually contribute too little variance to be detectable by GWAS as well as regions with single common GWAS-detectable SNPs. We use genome-wide SNP array data to obtain both a genome-wide relationship matrix and regional relationship (“identity by state" or IBS) matrices for sequential regions across the genome. We then estimate a heritability for each region sequentially in our genome-wide scan. We demonstrate by simulation and with real data that, when compared to traditional (“individual SNP") GWAS, our method uncovers new loci that explain additional trait variation. We analysed data from three Southern European populations and from Orkney for exemplar traits – serum uric acid concentration and height. We show that regional heritability estimates are correlated with results from genome-wide association analysis but can capture more of the genetic variance segregating in the population and identify additional trait loci

    Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus

    Get PDF
    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to dat

    Local exome sequences facilitate imputation of less common variants and increase power of genome wide association studies

    Get PDF
    The analysis of less common variants in genome-wide association studies promises to elucidate complex trait genetics but is hampered by low power to reliably detect association. We show that addition of population-specific exome sequence data to global reference data allows more accurate imputation, particularly of less common SNPs (minor allele frequency 1–10%) in two very different European populations. The imputation improvement corresponds to an increase in effective sample size of 28–38%, for SNPs with a minor allele frequency in the range 1–3%
    corecore