2,273 research outputs found
Reporting Results in High Energy Physics Publications: a Manifesto
The complexity of collider data analyses has dramatically increased from
early colliders to the CERN LHC. Reconstruction of the collision products in
the particle detectors has reached a point that requires dedicated publications
documenting the techniques, and periodic retuning of the algorithms themselves.
Analysis methods evolved to account for the increased complexity of the
combination of particles required in each collision event (final states) and
for the need of squeezing every last bit of sensitivity from the data;
physicists often seek to fully reconstruct the final state, a process that is
mostly relatively easy at lepton colliders but sometimes exceedingly difficult
at hadron colliders to the point of requiring sometimes using advanced
statistical techniques such as machine learning.
The need for keeping the publications documenting results to a reasonable
size implies a greater level of compression or even omission of information
with respect to publications from twenty years ago. The need for compression
should however not prevent sharing a reasonable amount of information that is
essential to understanding a given analysis. Infrastructures like Rivet or
HepData have been developed to host additional material, but physicists in the
experimental Collaborations often still send an insufficient amount of material
to these databases.
In this manuscript I advocate for an increase in the information shared by
the Collaborations, and try to define a minimum standard for acceptable level
of information when reporting the results of statistical procedures in High
Energy Physics publications.Comment: 26 pages, 3 tables, 7 figures. Accepted by Reviews in Physics on July
3rd, 2020. Preproof at:
https://www.sciencedirect.com/science/article/pii/S240542832030009
The Inverse Bagging Algorithm: Anomaly Detection by Inverse Bootstrap Aggregating
For data sets populated by a very well modeled process and by another process
of unknown probability density function (PDF), a desired feature when
manipulating the fraction of the unknown process (either for enhancing it or
suppressing it) consists in avoiding to modify the kinematic distributions of
the well modeled one. A bootstrap technique is used to identify sub-samples
rich in the well modeled process, and classify each event according to the
frequency of it being part of such sub-samples. Comparisons with general MVA
algorithms will be shown, as well as a study of the asymptotic properties of
the method, making use of a public domain data set that models a typical search
for new physics as performed at hadronic colliders such as the Large Hadron
Collider (LHC).Comment: 8 pages, 5 figures. Proceedings of the XIIth Quark Confinement and
Hadron Spectrum conference, 28/8-2/9 2016, Thessaloniki, Greec
Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV
A search has been made for massive resonances decaying into a quark and a vector boson, qW or qZ, or a pair of vector bosons, WW, WZ, or ZZ, where each vector boson decays to hadronic final states. This search is based on a data sample corresponding to an integrated luminosity of 5.0 fb^-^1 of proton-proton collisions collected in the CMS experiment at the LHC in 2011 at a center-of-mass energy of 7 TeV. For sufficiently heavy resonances the decay products of each vector boson are merged into a single jet, and the event effectively has a dijet topology. The background from QCD dijet events is reduced using recently developed techniques that resolve jet substructure. A 95% CL lower limit is set on the mass of excited quark resonances decaying into qW (qZ) at 2.38 TeV (2.15 TeV) and upper limits are set on the cross section for resonances decaying to qW, qZ, WW, WZ, or ZZ final states.Peer Reviewe
Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states
Results are reported from a search for non-standard-model Higgs boson decays to pairs of new light bosons, each of which decays into the μ+μ− final state. The new bosons may be produced either promptly or via a decay chain. The data set corresponds to an integrated luminosity of 5.3 fb−1 of proton–proton collisions at View the MathML source, recorded by the CMS experiment at the LHC in 2011. Such Higgs boson decays are predicted in several scenarios of new physics, including supersymmetric models with extended Higgs sectors or hidden valleys. Thus, the results of the search are relevant for establishing whether the new particle observed in Higgs boson searches at the LHC has the properties expected for a standard model Higgs boson. No excess of events is observed with respect to the yields expected from standard model processes. A model-independent upper limit of 0.86±0.06 fb on the product of the cross section times branching fraction times acceptance is obtained. The results, which are applicable to a broad spectrum of new physics scenarios, are compared with the predictions of two benchmark models as functions of a Higgs boson mass larger than 86 GeV/c2 and of a new light boson mass within the range 0.25–3.55 GeV/c2Peer Reviewe
Inclusive search for supersymmetry using the razor variables in collisions at TeV
An inclusive search is presented for new heavy particle pairs produced in = 7 TeV proton-proton collisions at the LHC using 4.7 +/- 0.1 inverse femtobarns of integrated luminosity. The selected events are analyzed in the 2D razor space of MR, an event-by-event indicator of the heavy particle mass scale, and R, a dimensionless variable related to the missing transverse energy. The third-generation sector is probed using the event heavy-flavor content. The search is sensitive to generic supersymmetry models with minimal assumptions about the superpartner decay chains. No excess is observed in the number of events beyond that predicted by the standard model. Exclusion limits are derived in the CMSSM framework as well as for simplified models. Within the CMSSM parameter space considered, gluino masses up to 800 GeV and squark masses up to 1.35 TeV are excluded at 95% confidence level depending on the model parameters. The direct production of pairs of stop or sbottom quarks is excluded for masses as high as 400 GeV.Peer Reviewe
Event shapes and azimuthal correlations in + jets events in collisions at TeV
Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at sqrt(s) = 7 TeV correspond to an integrated luminosity of 5.0 inverse femtobarns. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z + 1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.Peer Reviewe
Search in leptonic channels for heavy resonances decaying to long-lived neutral particles
A search is performed for heavy resonances decaying to two long-lived massive neutral particles, each decaying to leptons. The experimental signature is a distinctive topology consisting of a pair of oppositely charged leptons originating at a separated secondary vertex. Events were collected by the CMS detector at the LHC during pp collisions at TeV, and selected from data samples corresponding to 4.1 (5.1) fb(−1) of integrated luminosity in the electron (muon) channel. No significant excess is observed above standard model expectations, and an upper limit is set with 95% confidence level on the production cross section times the branching fraction to leptons, as a function of the long-lived massive neutral particle lifetime.Peer Reviewe
Studies of jet mass in dijet and W/Z + jet events
Invariant mass spectra for jets reconstructed using the anti-kt and Cambridge-Aachen algorithms are studied for different jet "grooming" techniques in data corresponding to an integrated luminosity of 5 inverse femtobarns, recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7 TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation.Peer Reviewe
Study of high-pT charged particle suppression in PbPb compared to collisions at TeV
The transverse momentum spectra of charged particles have been measured in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV by the CMS experiment at the LHC. In the transverse momentum range pt = 5-10 GeV/c, the charged particle yield in the most central PbPb collisions is suppressed by up to a factor of 5 compared to the pp yield scaled by the number of incoherent nucleon-nucleon collisions. At higher pt, this suppression is significantly reduced, approaching roughly a factor of 2 for particles with pt in the range pt=40-100 GeV/c.Peer Reviewe
- …