8 research outputs found
Record electron self-cooling in cold-electron bolometers with a hybrid superconductor-ferromagnetic nanoabsorber and traps
The Cosmic Microwave Background (CMB) radiation is the only observable that allows studying the earliest stage of the Universe. Radioastronomy instruments for CMB investigation require low working temperatures around 100 mK to get the necessary sensitivity. On-chip electron cooling of receivers is a pathway for future space missions due to problems of dilution fridges at low gravity. Here, we demonstrate experimentally that in a Cold-Electron Bolometer (CEB) a theoretical limit of electron cooling down to 65 mK from phonon temperature of 300 mK can be reached. It is possible due to effective withdrawing of hot electrons from the tunnel barrier by double stock, special traps and suppression of Andreev Joule heating in hybrid Al/Fe normal nanoabsorber
Spectrum of Andreev bound states in Josepshon junctions with a ferromagnetic insulator
Ferromagnetic-insulator (FI) based Josephson junctions are promising
candidates for a coherent superconducting quantum bit as well as a classical
superconducting logic circuit. Recently the appearance of an intriguing
atomic-scale 0-pi transition has been theoretically predicted. In order to
uncover the mechanism of this phenomena, we numerically calculate the spectrum
of Andreev bound states in a FI barrier by diagonalizing the Bogoliubov-de
Gennes equation. We show that Andreev spectrum drastically depends on the
parity of the FI-layer number L and accordingly the pi (0) state is always more
stable than the 0 (pi) state if L is odd (even).Comment: 6 pages, 5 figures, Invited Report on the Moscow International
Symposium on Magnetism MISM201
Modeling of GERDA Phase II data
The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground
laboratory (LNGS) of INFN is searching for neutrinoless double-beta
() decay of Ge. The technological challenge of GERDA is
to operate in a "background-free" regime in the region of interest (ROI) after
analysis cuts for the full 100kgyr target exposure of the
experiment. A careful modeling and decomposition of the full-range energy
spectrum is essential to predict the shape and composition of events in the ROI
around for the search, to extract a precise
measurement of the half-life of the double-beta decay mode with neutrinos
() and in order to identify the location of residual
impurities. The latter will permit future experiments to build strategies in
order to further lower the background and achieve even better sensitivities. In
this article the background decomposition prior to analysis cuts is presented
for GERDA Phase II. The background model fit yields a flat spectrum in the ROI
with a background index (BI) of cts/(kgkeVyr) for the enriched BEGe data set and
cts/(kgkeVyr) for the
enriched coaxial data set. These values are similar to the one of Gerda Phase I
despite a much larger number of detectors and hence radioactive hardware
components
Recommended from our members
Modeling of GERDA Phase II data
The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ) decay of 76Ge. The technological challenge of Gerda is to operate in a “background-free” regime in the region of interest (ROI) after analysis cuts for the full 100 kg·yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Qββ for the 0νββ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.04+0.78−0.85⋅10−3 cts/(keV·kg·yr) for the enriched BEGe data set and 14.68+0.47−0.52⋅10−3 cts/(keV·kg·yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components
Superconducting Diode Effect in Topological Hybrid Structures
Currently, the superconducting diode effect (SDE) is being actively discussed, due to its large application potential in superconducting electronics. In particular, superconducting hybrid structures, based on three-dimensional (3D) topological insulators, are among the best candidates, due to their having the strongest spin–orbit coupling (SOC). Most theoretical studies on the SDE focus either on a full numerical calculation, which is often rather complicated, or on the phenomenological approach. In the present paper, we compare the linearized and nonlinear microscopic approaches in the superconductor/ferromagnet/3D topological insulator (S/F/TI) hybrid structure. Employing the quasiclassical Green’s function formalism we solve the problem self-consistently. We show that the results obtained by the linearized approximation are not qualitatively different from the nonlinear solution. The main distinction in the results between the two methods was quantitative, i.e., they yielded different supercurrent amplitudes. However, when calculating the so-called diode quality factor the quantitative difference is eliminated and both approaches result in good agreement
Site-specific photolabile roadblocks for the study of transcription elongation in biologically complex systems
Transcriptional pausing is crucial for the timely expression of genetic information. Biochemical methods quantify the half-life of paused RNA polymerase (RNAP) by monitoring restarting complexes across time. However, this approach may produce apparent half-lives that are longer than true pause escape rates in biological contexts where multiple consecutive pause sites are present. We show here that the 6-nitropiperonyloxymethyl (NPOM) photolabile group provides an approach to monitor transcriptional pausing in biological systems containing multiple pause sites. We validate our approach using the well-studied his pause and show that an upstream RNA sequence modulates the pause half-life. NPOM was also used to study a transcriptional region within the Escherichia coli thiC riboswitch containing multiple consecutive pause sites. We find that an RNA hairpin structure located upstream to the region affects the half-life of the 5′ most proximal pause site—but not of the 3′ pause site—in contrast to results obtained using conventional approaches not preventing asynchronous transcription. Our results show that NPOM is a powerful tool to study transcription elongation dynamics within biologically complex systems
Ferroelectric polarization and single-atom catalyst synergistically promoting CO2 photoreduction of CuBiP2Se6
Further improving the activity and selectivity of photocatalytic CO2 reduction remains a challenge. Herein, we propose a new strategy for synergistically promoting photocatalytic CO2 reduction by combining two-dimensional (2D) ferroelectric polarization and single-atom catalysis. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the separation and migration of photogenerated carriers, which provides a prerequisite for enhancing the photocatalytic efficiency. In addition, the introduction of single Ag atoms can act as an electron reservoir to significantly modify the bonding configurations on the surface through proper static electron transfer, thus effectively promoting the adsorption and activation of CO2 molecules. More importantly, we found that switching the ferroelectric polarization can synergistically optimize the limiting potential as well as control the final products. This study provides a new approach for enhancing the catalytic activity and selectivity of photocatalytic CO2 reduction.This work is supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 23B0679), the Science Initiation Fund of Hengyang Normal University (No. 2023QD32), and the Basic Research Program of HSE University. The computational resources for this research were provided by the TianHe supercomputer in Changsha, China, and the HPC facilities at HSE University.Peer reviewe
Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach
We present a quantitative study of the density of states (DOS) in SF bilayers (where S is a bulk superconductor and F is a ferromagnetic metal) in the diffusive limit. We solve the quasiclassical Usadel equations in the structure considering the presence of magnetic and spin–orbit scattering. For practical reasons, we propose the analytical solution for the density of states in SF bilayers in the case of a thin ferromagnet and low transparency of the SF interface. This solution is confirmed by numerical calculations using a self-consistent two-step iterative method. The behavior of DOS dependencies on magnetic and spin–orbit scattering times is discussed