520 research outputs found

    Crisis performance predictability in supply chains

    Get PDF
    It is widely acknowledged that supply chain ‘glitches’ may have detrimental effects on company per

    Patients’ needs and preferences in routine follow-up for early breast cancer; an evaluation of the changing role of the nurse practitioner

    Get PDF
    International audienceIn evaluating follow-up of early breast cancer, patients' views on care are important. The aim of this study was to evaluate the effect of the introduction of nurse practitioners (NPs) in a breast cancer unit on patients' informational needs, preferences and attitude towards follow-up

    Characterization and Evaluation of the Artemis Camera for Fluorescence-Guided Cancer Surgery

    Get PDF
    Purpose: Near-infrared (NIR) fluorescence imaging can provide the surgeon with real-time visualization of, e.g., tumor margins and lymph nodes. We describe and evaluate the Artemis, a novel, handheld NIR fluorescence camera.Procedures: We evaluated minimal detectable cell numbers (FaDu-luc2, 7D12-IRDye 800CW), preclinical intraoperative detection of sentinel lymph nodes (SLN) using indocyanine green (ICG), and of orthotopic tongue tumors using 7D12-800CW. Results were compared with the Pearl imager. Clinically, three patients with liver metastases were imaged using ICG.Results: Minimum detectable cell counts for Artemis and Pearl were 2 × 105 and 4 × 104 cells, respectively. In vivo, seven SLNs were detected in four mice with both cameras. Orthotopic OSC-19-luc2-cGFP tongue tumors were clearly identifiable, and a minimum FaDu-luc2 tumor size of 1 mm3 could be identified. Six human malignant lesions were identified during three liver surgery procedures.Conclusions: Based on this study, the Artemis system has demonstrated its utility in fluorescence-guided cancer surgery

    Applying systems thinking to unravel the mechanisms underlying orthostatic hypotension related fall risk

    Get PDF
    Orthostatic hypotension (OH) is an established and common cardiovascular risk factor for falls. An in-depth understanding of the various interacting pathophysiological pathways contributing to OH-related falls is essential to guide improvements in diagnostic and treatment opportunities. We applied systems thinking to multidisciplinary map out causal mechanisms and risk factors. For this, we used group model building (GMB) to develop a causal loop diagram (CLD). The GMB was based on the input of experts from multiple domains related to OH and falls and all proposed mechanisms were supported by scientific literature. Our CLD is a conceptual representation of factors involved in OH-related falls, and their interrelatedness. Network analysis and feedback loops were applied to analyze and interpret the CLD, and quantitatively summarize the function and relative importance of the variables. Our CLD contains 50 variables distributed over three intrinsic domains (cerebral, cardiovascular, and musculoskeletal), and an extrinsic domain (e.g., medications). Between the variables, 181 connections and 65 feedback loops were identified. Decreased cerebral blood flow, low blood pressure, impaired baroreflex activity, and physical inactivity were identified as key factors involved in OH-related falls, based on their high centralities. Our CLD reflects the multifactorial pathophysiology of OH-related falls. It enables us to identify key elements, suggesting their potential for new diagnostic and treatment approaches in fall prevention. The interactive online CLD renders it suitable for both research and educational purposes and this CLD is the first step in the development of a computational model for simulating the effects of risk factors on falls
    • …
    corecore