350 research outputs found

    Observation of single collisionally cooled trapped ions in a buffer gas

    Get PDF
    Individual Ba ions are trapped in a gas-filled linear ion trap and observed with a high signal-to-noise ratio by resonance fluorescence. Single-ion storage times of ~5 min (~1 min) are achieved using He (Ar) as a buffer gas at pressures in the range 8e-5 - 4e-3 torr. Trap dynamics in buffer gases are experimentally studied in the simple case of single ions. In particular, the cooling effects of light gases such as He and Ar and the destabilizing properties of heavier gases such as Xe are studied. A simple model is offered to explain the observed phenomenology.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. A. Minor text and figure change

    Polarized photons in radiative muon capture

    Get PDF
    We discuss the measurement of polarized photons arising from radiative muon capture. The spectrum of left circularly polarized photons or equivalently the circular polarization of the photons emitted in radiative muon capture on hydrogen is quite sensitive to the strength of the induced pseudoscalar coupling constant gPg_P. A measurement of either of these quantities, although very difficult, might be sufficient to resolve the present puzzle resulting from the disagreement between the theoretical prediction for gPg_P and the results of a recent experiment. This sensitivity results from the absence of left-handed radiation from the muon line and from the fact that the leading parts of the radiation from the hadronic lines, as determined from the chiral power counting rules of heavy-baryon chiral perturbation theory, all contain pion poles.Comment: 10 pages, 6 figure

    A linear RFQ ion trap for the Enriched Xenon Observatory

    Full text link
    The design, construction, and performance of a linear radio-frequency ion trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are described. EXO aims to detect the neutrinoless double-beta decay of 136^{136}Xe to 136^{136}Ba. To suppress possible backgrounds EXO will complement the measurement of decay energy and, to some extent, topology of candidate events in a Xe filled detector with the identification of the daughter nucleus (136^{136}Ba). The ion trap described here is capable of accepting, cooling, and confining individual Ba ions extracted from the site of the candidate double-beta decay event. A single trapped ion can then be identified, with a large signal-to-noise ratio, via laser spectroscopy.Comment: 18 pages, pdflatex, submitted to NIM

    On Possibilities of Studying of Supernova Neutrinos at BAKSAN

    Full text link
    We consider the possibilities of studying a supernova collapse neutrino burst at Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences) using the prposed 5-kt target-mass liquid scintillation spectrometer. Attention is given to the influence of mixing angle θ13{\theta}_{13} on the expected rates and spectra of neutrino events

    Systematic study of trace radioactive impurities in candidate construction materials for EXO-200

    Full text link
    The Enriched Xenon Observatory (EXO) will search for double beta decays of 136Xe. We report the results of a systematic study of trace concentrations of radioactive impurities in a wide range of raw materials and finished parts considered for use in the construction of EXO-200, the first stage of the EXO experimental program. Analysis techniques employed, and described here, include direct gamma counting, alpha counting, neutron activation analysis, and high-sensitivity mass spectrometry.Comment: 32 pages, 6 figures. Expanded introduction, added missing table entry. Accepted for publication in Nucl. Instrum. Meth.

    Electron Antineutrino Search at the Sudbury Neutrino Observatory

    Get PDF
    Upper limits on the \nuebar flux at the Sudbury Neutrino Observatory have been set based on the \nuebar charged-current reaction on deuterium. The reaction produces a positron and two neutrons in coincidence. This distinctive signature allows a search with very low background for \nuebar's from the Sun and other potential sources. Both differential and integral limits on the \nuebar flux have been placed in the energy range from 4 -- 14.8 MeV. For an energy-independent \nu_e --> \nuebar conversion mechanism, the integral limit on the flux of solar \nuebar's in the energy range from 4 -- 14.8 MeV is found to be \Phi_\nuebar <= 3.4 x 10^4 cm^{-2} s^{-1} (90% C.L.), which corresponds to 0.81% of the standard solar model 8B \nu_e flux of 5.05 x 10^6 cm^{-2} s^{-1}, and is consistent with the more sensitive limit from KamLAND in the 8.3 -- 14.8 MeV range of 3.7 x 10^2 cm^{-2} s^{-1} (90% C.L.). In the energy range from 4 -- 8 MeV, a search for \nuebar's is conducted using coincidences in which only the two neutrons are detected. Assuming a \nuebar spectrum for the neutron induced fission of naturally occurring elements, a flux limit of Phi_\nuebar <= 2.0 x 10^6 cm^{-2} s^{-1}(90% C.L.) is obtained.Comment: submitted to Phys. Rev.

    Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity

    Get PDF
    The Sudbury Neutrino Observatory (SNO) has precisely determined the total active (nu_x) 8B solar neutrino flux without assumptions about the energy dependence of the nu_e survival probability. The measurements were made with dissolved NaCl in the heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/- 0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta = 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.Comment: Submitted to Phys. Rev. Let

    First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon

    Full text link
    We report the first measurement of coherent elastic neutrino-nucleus scattering (\cevns) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer \cevns over the background-only null hypothesis with greater than 3σ3\sigma significance. The measured cross section, averaged over the incident neutrino flux, is (2.2 ±\pm 0.7) ×\times1039^{-39} cm2^2 -- consistent with the standard model prediction. The neutron-number dependence of this result, together with that from our previous measurement on CsI, confirms the existence of the \cevns process and provides improved constraints on non-standard neutrino interactions.Comment: 8 pages, 5 figures with 2 pages, 6 figures supplementary material V3: fixes to figs 3,4 V4: fix typo in table 1, V5: replaced missing appendix, V6: fix Eq 1, new fig 3, V7 final version, updated with final revision

    Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory

    Get PDF
    Solar neutrinos from the decay of 8^8B have been detected at the Sudbury Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium and by the elastic scattering (ES) of electrons. The CC reaction is sensitive exclusively to nu_e's, while the ES reaction also has a small sensitivity to nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC reaction rate is \phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6 /cm^2 s. Assuming no flavor transformation, the flux inferred from the ES reaction rate is \phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s. Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that there is a non-electron flavor active neutrino component in the solar flux. The total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x 10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter
    corecore