24 research outputs found

    Lead system transformation for pooling of body surface map data: a surface Laplacian approach

    Get PDF
    Contains fulltext : 20540___.PDF (publisher's version ) (Open Access

    The number of independent signals in body surface maps.

    No full text
    Item does not contain fulltex

    Geometrical aspects of the interindividual variability of multilead ECG recordings.

    No full text
    Item does not contain fulltextThe electrocardiogram (ECG) as measured from healthy subjects shows a considerable interindividual variability. This variability is caused by geometrical as well as by physiological factors. In this study, the relative contribution of the geometrical factors is estimated. In addition a method aimed at correcting for these factors is described. First, a measure (RV) for quantifying the overall variability is presented, and for healthy individuals its value is estimated as 0.52. Next, based on a simulation study using the individual (heart-lung-torso) geometry of 25 subjects, the variability caused by geometrical factors is estimated as 0.40, indicating that in healthy subjects the RV for healthy individuals resulting from electrophysiology is of the order of 0.33. In an evaluation of the correction procedure, applied to realistic, simulated body surface potentials, it is shown that RV caused by geometrical factors can be reduced from 0.40 to 0.06. When applying the correction procedure to measured ECG data no reduction of the RV value could be demonstrated. These results indicate that the involved procedure of the inverse computation of a cardiac equivalent source, at the present time, is of insufficient quality to cash in on the substantial reduction of RV values from 0.52 down to 0.33 that might be obtainable

    On Selecting a Body Surface Mapping

    No full text
    Item does not contain fulltex
    corecore