34 research outputs found

    Hyperbaric oxygen therapy to treat diabetes impaired Wound healing in rats

    Get PDF
    Wound healing in diabetes is frequently impaired and its treatment remains a challenge. Hyperbaric oxygen therapy (HBOT) receives a wide attendance and is often used as a last resort treatment option, however, its effectiveness for many conditions is unproven. We tested the effect of HBOT on healing of diabetic ulcers in an animal experimental setting. Experimental diabetes was induced by intraperitoneal injection of streptozotocin. Four weeks after diabetes induction, rats were ulcerated by clamping a pair of magnet disks on the dorsal skin for 16 h. After magnet removal, the animals received HBOT, daily on weekdays, for 4 weeks. To examine the effect of HBOT on diabetes impaired wound healing, the degree of wound tissue perfusion, inflammation, angiogenesis, and tissue breaking strength were evaluated. HBOT effects on the degree of inflammation and number of blood vessels could not be observed. HBOT improved the tissue breaking strength of the wound, however, this did not reach statistical significance. Twenty hours after ending the HBOT, a significantly improved oxygen saturation of the hemoglobin at the venous end of the capillaries and the quantity of hemoglobin in the micro-blood vessels was measured

    Hyperbaric oxygen therapy for wound healing in diabetic rats: Varying efficacy after a clinically-based protocol

    Get PDF
    Hyperbaric oxygen therapy (HBOT) is a clinical treatment in which a patient breathes pure oxygen for a limited period of time at an increased pressure. Although this therapy has been used for decades to assist wound healing, its efficacy for many conditions is unproven and its mechanism of action is not yet fully clarified. This study investigated the effects of HBOT on wound healing using a diabetes-impaired pressure ulcer rat model. Seven weeks after streptozotocin-induced diabetes in rats (n = 55), a pressure ulcer was created on dorsal skin. Subsequently, animals received HBOT during 6 weeks following a standard clinical protocol (HBOT group with varying endpoints up to 42 days post-wounding) versus controls without HBOT. Capillary venous oxygen saturation (SO2) showed a significant increase in the HBOT group on day 24; however, this increase was significant at this time point only. The quantity of hemoglobin in the micro-blood vessels (rHB) showed a significant decrease in the HBOT group on days 21 and 42, and showed a trend to decrease on day 31. Blood flow in the microcirculation showed a significant increase on days 17, 21 and 31 but a significant decrease on days 24 and 28. Inflammation scoring showed significantly decreased CD68 counts in the HBOT group on day 42, but not in the early stages of wound healing. Animals in the HBOT group showed a trend for an increase in mean wound breaking strength on day 42

    Hyperbaric Oxygen Therapy to Treat Diabetes Impaired Wound Healing in Rats

    No full text
    Wound healing in diabetes is frequently impaired and its treatment remains a challenge. Hyperbaric oxygen therapy (HBOT) receives a wide attendance and is often used as a last resort treatment option, however, its effectiveness for many conditions is unproven. We tested the effect of HBOT on healing of diabetic ulcers in an animal experimental setting. Experimental diabetes was induced by intraperitoneal injection of streptozotocin. Four weeks after diabetes induction, rats were ulcerated by clamping a pair of magnet disks on the dorsal skin for 16 h. After magnet removal, the animals received HBOT, daily on weekdays, for 4 weeks. To examine the effect of HBOT on diabetes impaired wound healing, the degree of wound tissue perfusion, inflammation, angiogenesis, and tissue breaking strength were evaluated. HBOT effects on the degree of inflammation and number of blood vessels could not be observed. HBOT improved the tissue breaking strength of the wound, however, this did not reach statistical significance. Twenty hours after ending the HBOT, a significantly improved oxygen saturation of the hemoglobin at the venous end of the capillaries and the quantity of hemoglobin in the micro-blood vessels was measured

    Tissue-engineered mucosa is a suitable model to quantify the acute biological effects of ionizing radiation

    No full text
    The aim of this study was to evaluate the suitability of tissue-engineered mucosa (TEM) as a model for studying the acute effects of ionizing radiation (IR) on the oral mucosa. TEM and native non-keratinizing oral mucosa (NNOM) were exposed to a single dose of 16.5 Gy and harvested at 1, 6, 24, 48, and 72 h post-irradiation. DNA damage induced by IR was determined using p53 binding protein 1 (53BP1), and DNA repair was determined using Rad51. Various components of the epithelial layer, basement membrane, and underlying connective tissue were analyzed using immunohistochemistry. The expression of cytokines interleukin-1 beta (IL-1 beta and transforming growth factor beta 1 (TGF-beta 1) was analyzed using an enzyme-linked immunosorbent assay. The expression of DNA damage protein 53BP1 and repair protein Rad51 were increased post-irradiation. The expression of keratin 19, vimentin, collage type IV, desmoglein 3, and integrins alpha 6 and beta 4 was altered post-irradiation. Proliferation significantly decreased at 24, 48, and 72 h post-irradiation in both NNOM and TEM. IR increased the secretion of IL-1 beta, whereas TGF-beta 1 secretion was not altered. All observed IR-induced alterations in TEM were also observed in NNOM. Based on the similar response of TEM and NNOM to IR we consider our TEM construct a suitable model to quantify the acute biological effects of IR
    corecore