236 research outputs found
Cardamine hirsuta: a comparative view
Current advances in developmental genetics are increasingly underpinned by comparative approaches as more powerful experimental tools become available in non-model organisms. Cardamine hirsuta is related to the model plant Arabidopsis thaliana and comparisons between these two experimentally tractable species have advanced our understanding of development and diversity. The power of forward genetics to uncover new biology was evident in the isolation of REDUCED COMPLEXITY, a gene which is present in C. hirsuta but lost in A. thaliana, and shapes crucifer leaf diversity. Transferring two Knotted1-like homeobox genes between C. hirsuta and A. thaliana revealed a constraint imposed by pleiotropy on the evolutionary potential of cis regulatory change to modify leaf shape. FLOWERING LOCUS C was identified as a heterochronic gene that underlies natural leaf shape variation in C. hirsuta
MpTCP1 controls cell proliferation and redox processes in Marchantia polymorpha
TCP transcription factors are key regulators of angiosperm cell proliferation processes. It is unknown whether their regulatory growth capacities are conserved across land plants, which we examined in liverworts, one of the earliest diverging land plant lineages. We generated knockout mutants for MpTCP1, the single TCPâP clade gene in Marchantia polymorpha, and characterized its function conducting cell proliferation and morphological analyses as well as mRNA expression, transcriptome, chemical and DNA binding studies. Mptcp1ge lines show a reduced vegetative thallus growth and extra tissue formation in female reproductive structures. Additionally, mutant plants reveal increased H2O2 levels and an enhanced pigmentation in the thallus caused by formation of secondary metabolites, such as aminochromes. MpTCP1 proteins interact redoxâdependently with DNA and regulate the expression of a comprehensive redox network, comprising enzymes involved in H2O2 metabolism. MpTCP1 regulates Marchantia growth contextâdependently. Redox sensitivity of the DNA binding capacity of MpTCP1 proteins provides a mechanism to respond to altered redox conditions. Our data suggest that MpTCP1 activity could thereby have contributed to diversification of land plant morphologies and to adaptations to abiotic and biotic challenges, experienced by liverworts during early land plant colonization
Seasonal regulation of petal number
International audienceFour petals characterize the flowers of most species in the Brassicaceae family, and this phenotype is generally robust to genetic and environmental variation. A variable petal number distinguishes the flowers of Cardamine hirsuta from those of its close relative Arabidopsis (Arabidopsis thaliana), and allelic variation at many loci contribute to this trait. However, it is less clear whether C. hirsuta petal number varies in response to seasonal changes in environment. To address this question, we assessed whether petal number responds to a suite of environmental and endogenous cues that regulate flowering time in C. hirsuta. We found that petal number showed seasonal variation in C. hirsuta, such that spring flowering plants developed more petals than those flowering in summer. Conditions associated with spring flowering, including cool ambient temperature, short photoperiod, and vernalization, all increased petal number in C. hirsuta. Cool temperature caused the strongest increase in petal number and lengthened the time interval over which floral meristems matured. We performed live imaging of early flower development and showed that floral buds developed more slowly at 15°C versus 20°C. This extended phase of floral meristem formation, coupled with slower growth of sepals at 15°C, produced larger intersepal regions with more space available for petal initiation. In summary, the growth and maturation of floral buds is associated with variable petal number in C. hirsuta and responds to seasonal changes in ambient temperature
- âŠ