3,400 research outputs found

    Development and property study of the extremely thin 12 \texorpdfstring{μm\mu m} C-type straw tubes with 5-mm diameter for a Straw Tracker System of COMET

    Full text link
    The COMET experiment focuses on searching for the direct conversion of a muon into an electron with aluminum nuclei without emitting a neutrino (so-called μe\mu\rightarrow e conversion). This conversion violates charged lepton flavor conservation law, a fundamental principle in the Standard Model. The COMET experiment requirement is to achieve the muon-to-electron conversation sensitivity on a level of 101710^{-17}. The Straw Tracker System (STS) based on straw tubes could provide the necessary spatial resolution of 150 μ\mum and the electron momentum resolution better than 200 keV/c. The COMET experiment will be separated into two phases. Phase-I will operate with the 3.2 kW 8-GeV-proton beam, and Phase-II will operate with beam intensity increased to 56 kW. STS must operate in a vacuum with 1 bar internal pressure applied to straws. The initial design of 10-mm-diameter straws developed for phase-I will not be as efficient with the 20 times increased beam intensity of Phase II, but the new STS design based on 5-mm-diameter 12-μ\mum thick straws could fully satisfy the required efficiency. The mechanical properties of these straws, such as sagging, elongation, dependence of the diameter on over-pressure, etc, are discussed in this article

    PEN experiment: a precise measurement of the pi+ -> e+ nu decay branching fraction

    Full text link
    A new measurement of Bπe2B_{\pi e2}, the π+e+ν(γ)\pi^+ \to e^+\nu(\gamma) decay branching ratio, is currently under way at the Paul Scherrer Institute. The present experimental result on Bπe2B_{\pi e2} constitutes the most accurate test of lepton universality available. The accuracy, however, still lags behind the theoretical precision by over an order of magnitude. Because of the large helicity suppression of the πe2\pi_{e2} decay, its branching ratio is susceptible to significant contributions from new physics, making this decay a particularly suitable subject of study.Comment: 4 pages, 3 figures, talk given at the Tenth Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2009), La Jolla/San Diego, CA, 26-31 May 2009; to appear in Proceedings to be published by the American Institute of Physic

    Precise Measurement of the Pi+ -> Pi0 e+ nu Branching Ratio

    Full text link
    Using a large acceptance calorimeter and a stopped pion beam we have made a precise measurement of the rare Pi+ -> Pi0 e+ Nu,(pi_beta) decay branching ratio. We have evaluated the branching ratio by normalizing the number of observed pi_beta decays to the number of observed Pi+ -> e+ Nu, (pi_{e2}) decays. We find the value of Gamma(Pi+ -> Pi0 e+ Nu)/Gamma(total) = [1.036 +/- 0.004(stat.) +/- 0.004(syst.) +/- 0.003(pi_{e2})] x 10^{-8}$, where the first uncertainty is statistical, the second systematic, and the third is the pi_{e2} branching ratio uncertainty. Our result agrees well with the Standard Model prediction.Comment: 4 pages, 5 figures, 1 table, revtex4; changed content; updated analysi

    Observation of Spin-Dependent Charge Symmetry Breaking in ΛN\Lambda N Interaction: Gamma-Ray Spectroscopy of Λ4^4_{\Lambda }He

    Get PDF
    The energy spacing between the ground-state spin doublet of Λ4^4_\Lambda He(1+^+,0+^+) was determined to be 1406±2±21406 \pm 2 \pm 2 keV, by measuring γ\gamma rays for the 1+0+1^+ \to 0^+ transition with a high efficiency germanium detector array in coincidence with the 4^4He(K,π)(K^-,\pi^-) Λ4^4_\Lambda He reaction at J-PARC. In comparison to the corresponding energy spacing in the mirror hypernucleus Λ4^4_\Lambda H, the present result clearly indicates the existence of charge symmetry breaking (CSB) in ΛN\Lambda N interaction. It is also found that the CSB effect is large in the 0+0^+ ground state but is by one order of magnitude smaller in the 1+1^+ excited state, demonstrating that the ΛN\Lambda N CSB interaction has spin dependence

    Design, Commissioning and Performance of the PIBETA Detector at PSI

    Full text link
    We describe the design, construction and performance of the PIBETA detector built for the precise measurement of the branching ratio of pion beta decay, pi+ -> pi0 e+ nu, at the Paul Scherrer Institute. The central part of the detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid angle. The calorimeter is supplemented with an active collimator/beam degrader system, an active segmented plastic target, a pair of low-mass cylindrical wire chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole detector system is housed inside a temperature-controlled lead brick enclosure which in turn is lined with cosmic muon plastic veto counters. Commissioning and calibration data were taken during two three-month beam periods in 1999/2000 with pi+ stopping rates between 1.3*E3 pi+/s and 1.3*E6 pi+/s. We examine the timing, energy and angular detector resolution for photons, positrons and protons in the energy range of 5-150 MeV, as well as the response of the detector to cosmic muons. We illustrate the detector signatures for the assorted rare pion and muon decays and their associated backgrounds.Comment: 117 pages, 48 Postscript figures, 5 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.

    Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar

    Get PDF
    Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4-6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tetheredballoon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2-3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds

    Search for the Θ+\Theta^{+} pentaquark via the πpKX\pi^-p\to K^-X reaction at 1.92 GeV/cc

    Get PDF
    The Θ+\Theta^+ pentaquark baryon was searched for via the πpKX\pi^-p\to K^-X reaction in a missing-mass resolution of 1.4 MeV/c2c^2(FWHM) at J-PARC. π\pi^- meson beams were incident on the liquid hydrogen target with the beam momentum of 1.92 GeV/cc. No peak structure corresponding to the Θ+\Theta^+ mass was observed. The upper limit of the production cross section averaged over the scattering angle of 2^{\circ} to 15^{\circ} in the laboratory frame was obtained to be 0.26 μ\mub/sr in the mass region of 1.51-1.55 GeV/c2c^2.The upper limit of the Θ+\Theta^+ decay width using the effective Lagrangian approach was obtained to be 0.72 MeV/c2c^2 and 3.1 MeV/c2c^2 for JΘP=1/2+J^P_{\Theta}=1/2^+ and JΘP=1/2J^P_{\Theta}=1/2^-, respectively.Comment: 5 pages, 3 figures, 1 tabl
    corecore