472 research outputs found

    Persistent High Incidence of Tuberculosis in Immigrants in a Low-Incidence Country

    Get PDF
    Immigration from areas of high incidence is thought to have fueled the resurgence of tuberculosis (TB) in areas of low incidence. To reduce the risk of disease in low-incidence areas, the main countermeasure has been the screening of immigrants on arrival. This measure is based on the assumption of a prompt decline in the incidence of TB in immigrants during their first few years of residence in a country with low overall incidence. We have documented that this assumption is not true for 619 Somali immigrants reported in Denmark as having TB. The annual incidence of TB declined only gradually during the first 7 years of residence, from an initial 2,000 per 100,000 to 700 per 100,000. The decline was described by an exponential function with a half-time of 5.7 (95% confidence interval 4.0 to 9.7) years. This finding seriously challenges the adequacy of the customary practice of screening solely on arrival

    The mesolithic-neolithic transition and the chronology of the ‘elm decline’

    Get PDF
    The Neolithic in Britain saw the first appearance of domestic plant and animal resources, pottery, polished stone axes, monuments, and new house structures. With the introduction of domesticates and associated subsistence strategies, the Neolithic represents a significant change in human–environment interaction. Other changes have been observed in the palynological record of Britain in the early fourth millennium cal BC, including the elm decline, and archaeologists and paleobotanists have long discussed the degree of human involvement in this. This paper presents the first Bayesian statistical analysis of the elm decline using the case study of the east of Yorkshire and Humberside and key sites in west Yorkshire, and evidence for the last hunter-gatherer Mesolithic material culture and the first Neolithic material culture record. This region is critical because it is the only area of Britain and Ireland where we have robust and accurate published estimates for the timing of the latest Mesolithic activity and timing for the earliest Neolithic activity. Unpacking this perceived chronological correlation between the elm decline and the start of the Neolithic is critical to understanding the scale of human–environment modification at this time, and the nature of the first Neolithic societies in Britain

    High-resolution proglacial lake records of pre-Little Ice Age glacier advance, northeast Greenland

    Get PDF
    Understanding Arctic glacier sensitivity is key to predicting future response to air temperature rise. Previous studies have used proglacial lake sediment records to reconstruct Holocene glacier advance–retreat patterns in South and West Greenland, but high‐resolution glacier records from High Arctic Greenland are scarce, despite the sensitivity of this region to future climate change. Detailed geochemical analysis of proglacial lake sediments close to Zackenberg, northeast Greenland, provides the first high‐resolution record of Late Holocene High Arctic glacier behaviour. Three phases of glacier advance have occurred in the last 2000 years. The first two phases (c. 1320–800 cal. a BP) occurred prior to the Little Ice Age (LIA), and correspond to the Dark Ages Cold Period and the Medieval Climate Anomaly. The third phase (c. 700 cal. a BP), representing a smaller scale glacier oscillation, is associated with the onset of the LIA. Our results are consistent with recent evidence of pre‐LIA glacier advance in other parts of the Arctic, including South and West Greenland, Svalbard, and Canada. The sub‐millennial glacier fluctuations identified in the Madsen Lake succession are not preserved in the moraine record. Importantly, coupled XRF and XRD analysis has effectively identified a phase of ice advance that is not visible by sedimentology alone. This highlights the value of high‐resolution geochemical analysis of lake sediments to establish rapid glacier advance–retreat patterns in regions where chronological and morphostratigraphical control is limited

    Oxygen isotopic evidence for high‐magnitude, abrupt climatic events during the Lateglacial Interstadial in north‐west Europe:analysis of a lacustrine sequence from the site of Tirinie, Scottish Highlands

    Get PDF
    The Last Glacial to Interglacial Transition (LGIT) is a period of climatic instability. δ18O records are ideal for investigating the LGIT as this proxy responds rapidly to even minor climatic oscillations. Lacustrine carbonates offer the opportunity to investigate spatial diversity in patterns of climatic change during the LGIT but this requires the generation of δ18O records from a range of latitudinal and longitudinal settings. This study presents a coupled pollen and stable isotopic study of lacustrine carbonates spanning the Windermere Interstadial (the British equivalent of Greenland Interstadial 1, the Lateglacial Interstadial) from the site of Tirinie in the Scottish Highlands, a region where δ18O records are absent. The Interstadial is characterized by three δ18O peaks, warm intervals, and two δ18O declines, cold episodes, the timing of which is constrained by the presence of crypto-tephra. The landscape at Tirinie was highly responsive to these climatic oscillations as the sedimentary and pollen record respond to each isotopic shift. The paper concludes by highlighting that, across the British Isles, lacustrine δ18O records of the Interstadial have a consistent stratigraphy/structure, although the magnitude of the isotopic shifts is regionally variable. Potential causes of this variability are discussed

    Neolithic settlement at the woodland's edge: palynological data and timber architecture in Orkney, Scotland

    Get PDF
    It has often been assumed that the islands of Orkney were essentially treeless throughout much of the Holocene, with any ‘scrub’ woodland having been destroyed by Neolithic farming communities by around 3500 cal. BC. This apparently open, hyper-oceanic environment would presumably have provided quite marginal conditions for human settlement, yet Neolithic communities flourished and the islands contain some of the most spectacular remains of this period in north-west Europe. The study of new Orcadian pollen sequences, in conjunction with the synthesis of existing data, indicates that the timing of woodland decline was not synchronous across the archipelago, beginning in the Mesolithic, and that in some areas woodland persisted into the Bronze Age. There is also evidence to suggest that woodland communities in Orkney were more diverse, and therefore that a wider range of resources was available to Neolithic people, than has previously been assumed. Recent archaeological investigations have revealed evidence for timber buildings at early Neolithic settlement sites, suggesting that the predominance of stone architecture in Neolithic Orkney may not have been due to a lack of timber as has been supposed. Rather than simply reflecting adaptation to resource constraints, the reasons behind the shift from timber to stone construction are more complex and encompass social, cultural and environmental factors

    Late glacial and Holocene landscape change and rapid climate and coastal impacts in the Canal Beagle, southernmost Patagonia

    Get PDF
    Palaeoenvironmental data for the Late Glacial and Holocene periods are provided from Caleta Eugenia, in the eastern sector of Canal Beagle, southernmost Patagonia. The record commences at c. 16 200 cal a bp following glacier retreat in response to climatic warming. However, cooler conditions persisted during the Late Glacial period. The onset of more temperate conditions after c. 12 390 cal a bp is indicated by the arrival of southern beech forest and later establishment at c. 10 640 cal a bp, but the woodland growth was restricted by lower levels of effective moisture. The climate signal is then truncated by a rapid marine incursion at c. 8640 cal a bp which lasted until a more gradual emergence of the coast at c. 6600 cal a bp. During this period the pollen record appears to be dominated by the southern beech woodland. A punctuated hydroseral succession follows the isolation of the site from the sea leading to the re‐establishment of a peat bog. Between c. 5770 cal a bp and the present there were several periods of short rapid climatic change leading to drier conditions, probably as a result of late Holocene periods of climatic warming

    Late glacial and Holocene landscape change and rapid climate and coastal impacts in the Canal Beagle, southernmost Patagonia

    Get PDF
    Palaeoenvironmental data for the Late Glacial and Holocene periods are provided from Caleta Eugenia, in the eastern sector of Canal Beagle, southernmost Patagonia. The record commences at c. 16 200 cal a bp following glacier retreat in response to climatic warming. However, cooler conditions persisted during the Late Glacial period. The onset of more temperate conditions after c. 12 390 cal a bp is indicated by the arrival of southern beech forest and later establishment at c. 10 640 cal a bp, but the woodland growth was restricted by lower levels of effective moisture. The climate signal is then truncated by a rapid marine incursion at c. 8640 cal a bp which lasted until a more gradual emergence of the coast at c. 6600 cal a bp. During this period the pollen record appears to be dominated by the southern beech woodland. A punctuated hydroseral succession follows the isolation of the site from the sea leading to the re‐establishment of a peat bog. Between c. 5770 cal a bp and the present there were several periods of short rapid climatic change leading to drier conditions, probably as a result of late Holocene periods of climatic warming
    corecore