72 research outputs found

    Eating Our Way to Their Extinction: What Florida Should Learn From California on Banning Shark Fin Soup and the Shark Fin Trade

    Get PDF
    Currently, it is legal to possess, sell and purchase shark fins in 38 states, Florida included. Fishermen are allowed to harvest sharks all around the world with minimal surveillance and weak regulation, causing greed to push a 400-million-year old species to the brink of extinction. Florida’s current statue is completely ineffective and toothless when it comes to shark conservation. The State needs to amend its shark fin law prohibiting the trade in all detached shark fins, for any purpose, by anyone to discontinue fueling a cruel practice. There is a federal bill pending in congress that would ban the trade across the nation called, The Shark Fin Sales Elimination Act of 2017, but we do not know when it will be decided as the bill is still gathering cosponsor support—the faster more effective route would be the amend Florida Stat. § 379.2426. This paper aims to redirect Florida legislator’s attention on major economic gains by keeping sharks alive for tourism instead of focusing on the fisherman’s profits. It is important to inform the community to voice their concerns to their representatives that if we kill all the worlds shark’s population, we potentially destroy all food chains of an entire marine ecosystem

    (Anti)viral Material Design Guided by Scattering Methods

    Get PDF
    Viruses are nature’s own nanoparticles that are highly symmetric and monodisperse in size and shape with well-defined surface chemistry. They have evolved for optimal cell interactions, genetic information delivery and replication by the host cell over millions of years. These features render them into very efficient pathogens that place a severe burden onto the health of our society. At the same time, they are highly interesting objects for colloidal studies and building blocks for advanced bio-inspired materials for health applications. Their characterisation requires sophisticated experimental techniques such as scattering of X-rays, neutrons, and light to probe structures and interactions from the nanometre to the micrometre length-scale in solution. This contribution summarizes the recent progress in the field of virus self-assembly and virus-based biopolymer composites for advanced material design. It discusses the advances and highlights some of the challenges in the characterization of structure and dynamics in these materials with a focus on scattering techniques. It further demonstrates selected applications in the field of food and water purification

    The Effectiveness of a Nondiet Multidisciplinary Weight Reduction Program for Severe Overweight Patients with Psychological Comorbidities

    Get PDF
    Objective. For successful sustainable weight reduction, a multimodal program including behaviour therapy is needed. Lifestyle modification is mostly used for obesity BMI <40 kg/m2. The present study demonstrated the effect of an in-patient nondiet lifestyle program for patients with BMI >40 kg/m2 with psychological comorbidity. Research Methods and Procedere. A retrospective data analysis of 99 participants who passed the program based on moderate activity, healthy and regular food intake over metabolic rate and behaviour therapy was conducted. Results. 64 had a BMI >40 kg/m2 (mean value 49.99 ± 8.74). The relative weight reduction was −6.9 ± 3.9%; (Friedman test P < 0.05). Binary logistic regression analysis for n = 79 revealed that the achievement of the weight reduction goal (0.5 kg per week; predictors: sex, incidence of MTS, duration of in-patient therapy, psychological symptoms, BMI and activity level at baseline) was associated with a shorter duration of in-patient therapy (P = 0.007) and higher BMI at baseline (P = 0.010). Conclusion. Participants with BMI >40 kg/m2 may achieve significant changes of weight reduction and psychological symptoms. However, the primary outcome should not be weight reduction. It is necessary to identify the benefits of lifestyle modification on changing risk profiles and emotional regulation of food intake

    Enhancement of sorghum grain yield and nutrition: A role for arbuscular mycorrhizal fungi regardless of soil phosphorus availability

    Get PDF
    Societal Impact Statement Sorghum is an important cereal crop that provides calories and nutrients for much of the world's population, and it is often grown with low fertiliser input. Optimising the yield, nutritive content and bioavailability of sorghum grain with minimal input is of importance for human nutrition, and arbuscular mycorrhizal (AM) fungi have previously shown potential to assist in this. Across sorghum genetic diversity, AM fungi improved the yield, nutrition and zinc and iron bioavailability of grain in a low phosphorus soil. Thus, food production systems that effectively manage AM fungi may improve consumer outcomes. Summary Sorghum is a C4 cereal crop that is an important source of calories and nutrition across the world, predominantly cultivated and consumed in low- and middle-income countries. Sorghum can be highly colonised by arbuscular mycorrhizal (AM) fungi, and the plant-fungal association can lead to improvements in biomass and nutrient uptake. High-throughput phenotyping allows us to non-destructively interrogate the ‘hidden’ effects of AM fungi on sorghum growth and phenology. Eight genetically diverse sorghum genotypes were grown in a soil amended with 2 or 20 mg P kg−1 and inoculated with an AM fungal culture of Rhizophagus irregularis. High-throughput phenotyping uncovered the ‘hidden’ effects of AM fungi on growth and phenology, while grain biomass, nutrition, Zn and Fe bioavailability and root AM colonisation was determined after destructive harvest. Sorghum plants colonised by AM fungi generally performed better than non-AM control plants, with greater yield, harvest indices, and grain P, Zn and Fe contents. During the early growth stages, AM colonisation led to temporary growth depressions. There were also AM fungal and P fertilisation effects on sorghum time-of-flowering. The sorghum genotype with the highest AM colonisation could barely produce grain when non-inoculated. The two genotypes that failed to mature had very low AM colonisation. Generally, the genetically diverse sorghum genotypes were highly responsive to AM colonisation and produced more grain of greater nutritive quality when colonised, without adverse consequences for micronutrient bioavailability

    Two structurally distinct domains of the nucleoporin Nup170 cooperate to tether a subset of nucleoporins to nuclear pores

    Get PDF
    How individual nucleoporins (Nups) perform their role in nuclear pore structure and function is largely unknown. In this study, we examined the structure of purified Nup170 to obtain clues about its function. We show that Nup170 adopts a crescent moon shape with two structurally distinct and separable domains, a β-propeller N terminus and an α-solenoid C terminus. To address the individual roles of each domain, we expressed these domains separately in yeast. Notably, overexpression of the Nup170 C domain was toxic in nup170Δ cells and caused accumulation of several Nups in cytoplasmic foci. Further experiments indicated that the C-terminal domain anchors Nup170 to nuclear pores, whereas the N-terminal domain functions to recruit or retain a subset of Nups, including Nup159, Nup188, and Pom34, at nuclear pores. We conclude that Nup170 performs its role as a structural adapter between cytoplasmically oriented Nups and the nuclear pore membrane

    Purification of Nuclear Poly(A)-binding Protein Nab2 Reveals Association with the Yeast Transcriptome and a Messenger Ribonucleoprotein Core Structure

    Get PDF
    Nascent mRNAs produced by transcription in the nucleus are subsequently processed and packaged into mRNA ribonucleoprotein particles (messenger ribonucleoproteins (mRNPs)) before export to the cytoplasm. Here, we have used the poly(A)-binding protein Nab2 to isolate mRNPs from yeast under conditions that preserve mRNA integrity. Upon Nab2-tandem affinity purification, several mRNA export factors were co-enriched (Yra1, Mex67, THO-TREX) that were present in mRNPs of different size and mRNA length. High-throughput sequencing of the co-precipitated RNAs indicated that Nab2 is associated with the bulk of yeast transcripts with no specificity for different mRNA classes. Electron microscopy revealed that many of the mRNPs have a characteristic elongated structure. Our data suggest that mRNPs, although associated with different mRNAs, have a unifying core structure

    Differential Effects of Painful and Non-Painful Stimulation on Tactile Processing in Fibromyalgia Syndrome and Subjects with Masochistic Behaviour

    Get PDF
    BACKGROUND: In healthy subjects repeated tactile stimulation in a conditioning test stimulation paradigm yields attenuation of primary (S1) and secondary (S2) somatosensory cortical activation, whereas a preceding painful stimulus results in facilitation. METHODOLOGY/PRINCIPAL FINDINGS: Since previous data suggest that cognitive processes might affect somatosensory processing in S1, the present study aims at investigating to what extent cortical reactivity is altered by the subjective estimation of pain. To this end, the effect of painful and tactile stimulation on processing of subsequently applied tactile stimuli was investigated in patients with fibromyalgia syndrome (FMS) and in subjects with masochistic behaviour (MB) by means of a 122-channel whole-head magnetoencephalography (MEG) system. Ten patients fulfilling the criteria for the diagnosis of FMS, 10 subjects with MB and 20 control subjects matched with respect to age, gender and handedness participated in the present study. Tactile or brief painful cutaneous laser stimuli were applied as conditioning stimulus (CS) followed by a tactile test stimulus (TS) 500 ms later. While in FMS patients significant attenuation following conditioning tactile stimulation was evident, no facilitation following painful stimulation was found. By contrast, in subjects with MB no attenuation but significant facilitation occurred. Attenuation as well as facilitation applied to cortical responses occurring at about 70 ms but not to early S1 or S2 responses. Additionally, in FMS patients the amount of attenuation was inversely correlated with catastrophizing tendency. CONCLUSION: The present results imply altered cortical reactivity of the primary somatosensory cortex in FMS patients and MB possibly reflecting differences of individual pain experience

    Differential Gene Expression Patterns of EBV Infected EBNA-3A Positive and Negative Human B Lymphocytes

    Get PDF
    The genome of Epstein-Barr virus (EBV) encodes 86 proteins, but only a limited set is expressed in EBV–growth transformed B cells, termed lymphoblastoid cell lines (LCLs). These cells proliferate via the concerted action of EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), some of which are rate limiting to establish a stable homeostasis of growth promoting and anti-apoptotic activities. We show here that EBV mutants, which lack the EBNA-3A gene, are impaired but can still initiate cell cycle entry and proliferation of primary human B cells in contrast to an EBNA-2 deficient mutant virus. Surprisingly, and in contrast to previous reports, these viral mutants are attenuated in growth transformation assays but give rise to permanently growing EBNA-3A negative B cell lines which exhibit reduced proliferation rates and elevated levels of apoptosis. Expression profiles of EBNA-3A deficient LCLs are characterized by 129 down-regulated and 167 up-regulated genes, which are significantly enriched for genes involved in apoptotic processes or cell cycle progression like the tumor suppressor gene p16/INK4A, or might contribute to essential steps of the viral life cycle in the infected host. In addition, EBNA-3A cellular target genes remarkably overlap with previously identified targets of EBNA-2. This study comprises the first genome wide expression profiles of EBNA-3A target genes generated within the complex network of viral proteins of the growth transformed B cell and permits a more detailed understanding of EBNA-3A's function and contribution to viral pathogenesis
    corecore