1,214 research outputs found

    Tkachenko modes in a superfluid Fermi gas at unitarity

    Full text link
    We calculate the frequencies of the Tkachenko oscillations of a vortex lattice in a harmonically trapped superfluid Fermi gas. We use the elasto-hydrodynamic theory by properly accounting for the elastic constants, the Thomas-Fermi density profile of the atomic cloud, and the boundary conditions. Thanks to the Fermi pressure, which is responsible for larger cloud radii with respect to the case of dilute Bose-Einstein condensed gases, large vortex lattices are achievable in the unitary limit of infinite scattering length, even at relatively small angular velocities. This opens the possibility of experimentally observing vortex oscillations in the regime where the dispersion relation approaches the Tkachenko law for incompressible fluids and the mode frequency is almost comparable to the trapping frequencies.Comment: 5 pages, 1 figure; minor changes, now published as Phys. Rev. A 77, 021602(R) (2008

    Tkachenko modes as sources of quasiperiodic pulsar spin variations

    Full text link
    We study the long wavelength shear modes (Tkachenko waves) of triangular lattices of singly quantized vortices in neutron star interiors taking into account the mutual friction between the superfluid and the normal fluid and the shear viscosity of the normal fluid. The set of Tkachenko modes that propagate in the plane orthogonal to the spin vector are weakly damped if the coupling between the superfluid and normal fluid is small. In strong coupling, their oscillation frequencies are lower and are undamped for small and moderate shear viscosities. The periods of these modes are consistent with the observed ~100-1000 day variations in spin of PSR 1828-11.Comment: 7 pages, 3 figures, uses RevTex, v2: added discussion/references, matches published versio

    Vortex lattices in rapidly rotating Bose-Einstein condensates: modes and correlation functions

    Full text link
    After delineating the physical regimes which vortex lattices encounter in rotating Bose-Einstein condensates as the rotation rate, Ω\Omega, increases, we derive the normal modes of the vortex lattice in two dimensions at zero temperature. Taking into account effects of the finite compressibility, we find an inertial mode of frequency 2Ω\ge 2\Omega, and a primarily transverse Tkachenko mode, whose frequency goes from being linear in the wave vector in the slowly rotating regime, where Ω\Omega is small compared with the lowest compressional mode frequency, to quadratic in the wave vector in the opposite limit. We calculate the correlation functions of vortex displacements and phase, density and superfluid velocities, and find that the zero-point excitations of the soft quadratic Tkachenko modes lead in a large system to a loss of long range phase correlations, growing logarithmically with distance, and hence lead to a fragmented state at zero temperature. The vortex positional ordering is preserved at zero temperature, but the thermally excited Tkachenko modes cause the relative positional fluctuations to grow logarithmically with separation at finite temperature. The superfluid density, defined in terms of the transverse velocity autocorrelation function, vanishes at all temperatures. Finally we construct the long wavelength single particle Green's function in the rotating system and calculate the condensate depletion as a function of temperature.Comment: 11 pages Latex, no figure

    Vortex Lattice Inhomogeneity in Spatially Inhomogeneous Superfluids

    Get PDF
    A trapped degenerate Bose gas exhibits superfluidity with spatially nonuniform superfluid density. We show that the vortex distribution in such a highly inhomogeneous rotating superfluid is nevertheless nearly uniform. The inhomogeneity in vortex density, which diminishes in the rapid-rotation limit, is driven by the discrete way vortices impart angular momentum to the superfluid. This effect favors highest vortex density in regions where the superfluid density is most uniform (e.g., the center of a harmonically trapped gas). A striking consequence of this is that the boson velocity deviates from a rigid-body form exhibiting a radial-shear flow past the vortex lattice.Comment: 5 RevTeX pgs,2 figures, published versio

    Pinning and collective modes of a vortex lattice in a Bose-Einstein condensate

    Full text link
    We consider the ground state of vortices in a rotating Bose-Einstein condensate that is loaded in a corotating two-dimensional optical lattice. Due to the competition between vortex interactions and their potential energy, the vortices arrange themselves in various patterns, depending on the strength of the optical potential and the vortex density. We outline a method to determine the phase diagram for arbitrary vortex filling factor. Using this method, we discuss several filling factors explicitly. For increasing strength of the optical lattice, the system exhibits a transition from the unpinned hexagonal lattice to a lattice structure where all the vortices are pinned by the optical lattice. The geometry of this fully pinned vortex lattice depends on the filling factor and is either square or triangular. For some filling factors there is an intermediate half-pinned phase where only half of the vortices is pinned. We also consider the case of a two-component Bose-Einstein condensate, where the possible coexistence of the above-mentioned phases further enriches the phase diagram. In addition, we calculate the dispersion of the low-lying collective modes of the vortex lattice and find that, depending on the structure of the ground state, they can be gapped or gapless. Moreover, in the half-pinned and fully pinned phases, the collective mode dispersion is anisotropic. Possible experiments to probe the collective mode spectrum, and in particular the gap, are suggested.Comment: 29 pages, 4 figures, changes in section

    Vortices in Spatially Inhomogeneous Superfluids

    Get PDF
    We study vortices in a radially inhomogeneous superfluid, as realized by a trapped degenerate Bose gas in a uniaxially symmetric potential. We show that, in contrast to a homogeneous superfluid, an off-axis vortex corresponds to an anisotropic superflow whose profile strongly depends on the distance to the trap axis. One consequence of this superflow anisotropy is vortex precession about the trap axis in the absence of an imposed rotation. In the complementary regime of a finite prescribed rotation, we compute the minimum-energy vortex density, showing that in the rapid-rotation limit it is extremely uniform, despite a strongly inhomogeneous (nearly) Thomas-Fermi condensate density ρs(r)\rho_s(r). The weak radially-dependent contribution (2lnρs(r)\propto \nabla^2\ln\rho_s(r)) to the vortex distribution, that vanishes with the number of vortices NvN_v as 1Nv\frac{1}{N_v}, arises from the interplay between vortex quantum discretness (namely their inability to faithfully support the imposed rigid-body rotation) and the inhomogeneous superfluid density. This leads to an enhancement of the vortex density at the center of a typical concave trap, a prediction that is in quantitative agreement with recent experiments (cond-mat/0405240). One striking consequence of the inhomogeneous vortex distribution is an azimuthally-directed, radially-shearing superflow.Comment: 22 RevTeX pages, 20 figures, Submitted to PR

    Rapidly rotating Bose-Einstein condensates in anharmonic potentials

    Full text link
    Rapidly rotating Bose-Einstein condensates confined in anharmonic traps can exhibit a rich variety of vortex phases, including a vortex lattice, a vortex lattice with a hole, and a giant vortex. Using an augmented Thomas-Fermi variational approach to determine the ground state of the condensate in the rotating frame -- valid for sufficiently strongly interacting condensates -- we determine the transitions between these three phases for a quadratic-plus-quartic confining potential. Combining the present results with previous numerical simulations of small rotating condensates in such anharmonic potentials, we delineate the general structure of the zero temperature phase diagram.Comment: 5 pages, 5 figure

    Theory of vortex-lattice melting in a one-dimensional optical lattice

    Full text link
    We investigate quantum and temperature fluctuations of a vortex lattice in a one-dimensional optical lattice. We discuss in particular the Bloch bands of the Tkachenko modes and calculate the correlation function of the vortex positions along the direction of the optical lattice. Because of the small number of particles in the pancake Bose-Einstein condensates at every site of the optical lattice, finite-size effects become very important. Moreover, the fluctuations in the vortex positions are inhomogeneous due to the inhomogeneous density. As a result, the melting of the lattice occurs from the outside inwards. However, tunneling between neighboring pancakes substantially reduces the inhomogeneity as well as the size of the fluctuations. On the other hand, nonzero temperatures increase the size of the fluctuations dramatically. We calculate the crossover temperature from quantum melting to classical melting. We also investigate melting in the presence of a quartic radial potential, where a liquid can form in the center instead of at the outer edge of the pancake Bose-Einstein condensates.Comment: 17 pages, 17 figures, submitted to Phys. Rev. A, references update

    Zero-energy states in rotating trapped Bose-Einstein condensates

    Full text link
    We have calculated low-lying quasiparticle excitation spectra of rotating three-dimensional Bose-Einstein condensates. As opposed to the prediction of hydrodynamic continuum theories, we find a minimum in the Tkachenko mode spectrum at intermediate rotation frequencies of the harmonic trap. Such a minimum can harbour a Tkachenko quasiparticle with zero excitation energy. We discuss the experimental signatures of such a zero mode.Comment: 14 pages, 6 figure

    Study of the effect of the complex of active metabolites of cholecalciferol with vikasol on the state of periodontal tissues of rats

    Get PDF
    The study of the periodont-protective properties of the complex of a mixture of active metabolites of cholecalciferol – 1,25 (OH)2D3 and 24,25(OH)2D3 with a synthetic analogue of vitamin K – vikasol in experimental periodontitis in rats. The study was carried out on 18 white male rats for 1.5 months age, divided into 3 groups. Group 1 (4 individuals) comprised intact rats. In the rats of the 2nd and 3rd groups (7 individuals each), the parodontitis model was reproduced by oral administration of a 10% solution of pelentane, and also by replacing drinking water with a 2% solution of EDTA ad libitum. In group 3, rats were injected daily with a mixture of hormonal forms of vitamin D3 (1,25 (OH)2D3 and 24,25(OH)2D3) against a background of combined effects of pelentane and EDTA. The duration of the experiment was 60 days. It is established that the complex of a mixture of two hormonal-active forms of cholecalciferol with vikasol has significant periodontoprotective properties. The obtained data substantiate the inclusion of vitamin D3 in the composition of perioodontoprotective agents in the treatment of periodontitis
    corecore