316 research outputs found

    Magnetoconductance signatures of chiral domain-wall bound states in magnetic topological insulators

    Full text link
    Recent magnetoconductance measurements performed on magnetic topological insulator candidates have revealed butterfly-shaped hysteresis. This hysteresis has been attributed to the formation of gapless chiral domain-wall bound states during a magnetic field sweep. We treat this phenomenon theoretically, providing a link between microscopic magnetization dynamics and butterfly hysteresis in magnetoconductance. Further, we illustrate how a spatially resolved conductance measurement can probe the most striking feature of the domain-wall bound states: their chirality. This work establishes a regime where a definitive link between butterfly hysteresis in longitudinal magneto-conductance and domain-wall bound states can be made. This analysis provides an important tool for the identification of magnetic topological insulators.Comment: v2: Final published version; 7 pages, 3 figure

    Horizontal Planar Motion Mechanism (HPMM) Incorporated to the existing towing carriage for Ship Manoeuvring Studies

    Get PDF
    Planar Motion Mechanism (PMM) equipment is a facility generally attached with Towing Tank to perform experimental studies with ship models to determine the manoeuvring characteristics of a ship. Ship model is oscillated at prescribed amplitude and frequency in different modes of operation while it is towed along the towing tank at predefined speed.The hydrodynamic forces and moments are recorded, analyzed and processed to get the hydrodynamic derivatives appearing in the manoeuvring equations of motion of a ship. This paper presents the details about the Horizontal Planar Motion Mechanism (HPMM) equipment which is designed, developed and installed in Towing Tank laboratory at IIT Madras

    A State of Art Concept in Contriving of Underwater Networks

    Get PDF
    the underwater ocean environment is widely considered as one of the most difficult communications channels. Underwater acoustic networks have recently emerged as a new area of research in wireless networking. Underwater networks are generally formed by acoustically connected ocean - bottom sensors, underwater gateways and a surfa ce station, which provides a link to an on - shore control center. In recent years, there has been substantial work on protocol design for these networks with most efforts focusing on MAC and network layer protocols. Low communication bandwidth, large propag ation delay, floating node mobility, and high error probability are the challenges of building mobile underwater wireless sensor networks (WSN) for aquatic applications. Underwater sensor networks (WSNs) are the enabling technology for wide range of appl ications like monitoring the strong influences and impact of climate regulation, nutrient production, oil retrieval and transportation, man y scientific, environmental, commercial, safety, and military applications. This paper first introduces the concept o f UWSN, operation, applications and then reviews some recent developments within this research area and proposes an adaptive push system for dissemination of data in underwater wireless sensor networks. The goal of this paper is to survey the existing net w ork technology and its applicability to underwater acoustic channels. In this paper we provide an overview of recent medium acces s control, routing, transport, and cross - layer networking protocols. It examines the main approaches and challenges in the desi gn and implementation of underwater wireless sensor networks. Finally, some suggestions and promising solutions are given for th ese issues

    Circular Capacitance Micromachined Ultrasonic Transducer

    Get PDF
    Capacitance micromachined ultrasonic transducers (CMUTs) have become an attractive alternative to the piezoelectric transducers, especially in air-coupled nondestructive evaluation (NDE) and ultrasound medical imaging flow metering,  micro/nanoelectronics, and industrial cleaning, etc. These are similar to other capacitance transducers as these employ a vibrating membrane to send and receive ultrasound in air and water. This paper describes the theory and design of a circular micromachined ultrasonic transducer which could lead to a CMUT with many advantages, including less loading effect. The software programs (Intellisuite 8.2 and MATLAB 7.0) were used to model a single cell of CMUT. The simulations-based studies of the critical parameters like collapse voltage and snapback voltage, which influence the operation of the CMUTs to a large extent, has been discussed. Small signal equivalent circuit model for the circular CMUT has been discussed and the program (SPICE) has been used for the simulation of the small signal equivalent circuit.Defence Science Journal, 2009, 59(6), pp.627-633, DOI:http://dx.doi.org/10.14429/dsj.59.156

    Remote preconditioning by aortic constriction: affords cardioprotection as classical or other remote ischemic preconditioning? Role of iNOS

    Get PDF
    Dose remote preconditioning by aortic constriction (RPAC) affords cardioprotection similar to classical or other remote ischemic preconditioning stimulus? Moreover study was also designed to investigate role of inducible nitric oxide synthase in remote preconditioning by aortic constriction. There are sufficient evidences that "ischemic preconditioning" has surgical applications and afford clinically relevant cardioprotection. Transient occlusion of circumflex artery, renal artery, limb artery or mesenteric artery preconditions the myocardium against ischemia reperfusion injury in case of ischemic heart disease leading to myocardial infraction. Here abdominal aorta was selected to produce RPAC. Four episodes of Ischemia-reperfusion of 5 min each to abdominal aorta produced RPAC by assessment of infract size, LDH and CK. These studies suggest RPAC produced acute (FWOP) and delayed (SWOP) cardioprotective effect. RPAC demonstrated a significant decrease in Ischemia-reperfusion induced release of LDH, CK and extent of myocardial infract size. L-NAME (10 mg/Kg i.v.), Aminoguanidine (150 mg/Kg s.c.), Aminoguanidine (300 mg/Kg s.c.), S-methyl isothiourea (3 mg/Kg i.v.), 1400W (1 mg/Kg i.v.) administered 10 min. before global ischemia reperfusion produced no marked effect. Aminoguanidine (150 mg/Kg s.c.), Aminoguanidine (300 mg/Kg s.c.), S-methyl isothiourea (3 mg/Kg i.v.), 1400W (1 mg/Kg i.v.) pretreatment after RPAC produced no significant effect on acute RPAC induced decrease in LDH, CK and infract size, whereas L-NAME (10 mg/Kg i.v.) increased RPAC induced decrease in LDH, CK and infract size. Most interesting observation is in delayed RPAC, where all NOS inhibitors pretreatment attenuate RPAC induced decrease in LDH, CK and infract size. In conclusions, "Remote preconditioning by aortic constriction" (RPAC) affords cardioprotection similar to classical or other remote ischemic preconditioning stimulus. Moreover, late or delayed phase of RPAC has been mediated by inducible nitric oxide synthase (iNOS) whereas it has not involved in acute RPAC
    • …
    corecore