9 research outputs found

    Vocation: a concept for studying meaningful lives and careers in sport

    Get PDF
    In the present paper, we explore the notions of vocation and calling and their implications for sport psychology research and practice. We first discuss conceptual issues and outline existential psychology as one potential framework for understanding vocation in sport. Through a review of growing body of literature on vocation and calling in vocational psychology and reflections on applied sport psychology practice, we identify a number of ways these concepts can be used to advance our understandings of athletic career development, motivation, and mental health in sport. Vocation can also help applied practitioners understand athletes’ strive for authenticity and commitment to sport. In summary, we propose that the concept of vocation can be useful for studying meaningful lives and careers in sport

    Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L.

    No full text
    Genetic variation of bud burst and early growth components was estimated in a full-sib family of Quercus robur L. comprising 278 offspring. The full sibs were vegetatively propagated, and phenotypic assessments were made in three field tests. This two-generation pedigree was also used to construct a genetic linkage map (12 linkage groups, 128 markers) and locate quantitative trait loci (QTLs) controlling bud burst and growth components. In each field test, the date of bud burst extended over a period of 20 days from the earliest to the latest clone. Bud burst exhibited higher heritability (0.15–0.51) than growth components (0.04–0.23) and also higher correlations across field tests. Over the three tests there were 32 independent detected QTLs (Ple5% at the chromosome level) controlling bud burst, which likely represent at least 12 unique genes or chromosomal regions controlling this trait. QTLs explained from 3% to 11% of the variance of the clonal means. The number of QTLs controlling height growth components was lower and varied between two and four. However the contribution of each QTL to the variance of the clonal mean was higher (from 4% to 19%). These results indicate that the genetic architecture of two important fitness-related traits are quite different. On the one hand, bud burst is controlled by several QTLs with rather low to moderate effects, but contributing to a high genetic (additive) variance. On the other hand, height growth depends on fewer QTLs with moderate to strong effects, resulting in lower heritabilities of the trai

    Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models

    Get PDF
    International audienceAbstractKey messageWe demonstrate that, beyond leaf phenology, the phenological cycles of wood and fine roots present clear responses to environmental drivers in temperate and boreal trees. These drivers should be included in terrestrial ecosystem models.ContextIn temperate and boreal trees, a dormancy period prevents organ development during adverse climatic conditions. Whereas the phenology of leaves and flowers has received considerable attention, to date, little is known regarding the phenology of other tree organs such as wood, fine roots, fruits, and reserve compounds.AimsHere, we review both the role of environmental drivers in determining the phenology of tree organs and the models used to predict the phenology of tree organs in temperate and boreal forest trees.ResultsTemperature is a key driver of the resumption of tree activity in spring, although its specific effects vary among organs. There is no such clear dominant environmental cue involved in the cessation of tree activity in autumn and in the onset of dormancy, but temperature, photoperiod, and water stress appear as prominent factors. The phenology of a given organ is, to a certain extent, influenced by processes in distant organs.ConclusionInferring past trends and predicting future trends of tree phenology in a changing climate requires specific phenological models developed for each organ to consider the phenological cycle as an ensemble in which the environmental cues that trigger each phase are also indirectly involved in the subsequent phases. Incorporating such models into terrestrial ecosystem models (TEMs) would likely improve the accuracy of their predictions. The extent to which the coordination of the phenologies of tree organs will be affected in a changing climate deserves further research

    AIB1: A Transcriptional Coactivator Which Integrates Signaling Cross Talk in Cancer Cells

    No full text

    Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models

    No full text
    corecore