112 research outputs found

    A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability

    Full text link
    Graph Neural Networks (GNNs) have made rapid developments in the recent years. Due to their great ability in modeling graph-structured data, GNNs are vastly used in various applications, including high-stakes scenarios such as financial analysis, traffic predictions, and drug discovery. Despite their great potential in benefiting humans in the real world, recent study shows that GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data and lack interpretability, which have risk of causing unintentional harm to the users and society. For example, existing works demonstrate that attackers can fool the GNNs to give the outcome they desire with unnoticeable perturbation on training graph. GNNs trained on social networks may embed the discrimination in their decision process, strengthening the undesirable societal bias. Consequently, trustworthy GNNs in various aspects are emerging to prevent the harm from GNN models and increase the users' trust in GNNs. In this paper, we give a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability. For each aspect, we give the taxonomy of the related methods and formulate the general frameworks for the multiple categories of trustworthy GNNs. We also discuss the future research directions of each aspect and connections between these aspects to help achieve trustworthiness

    Turn Waste into Worth: Rectifying Top-kk Router of MoE

    Full text link
    Sparse Mixture of Experts (MoE) models are popular for training large language models due to their computational efficiency. However, the commonly used top-kk routing mechanism suffers from redundancy computation and memory costs due to the unbalanced routing. Some experts are overflow, where the exceeding tokens are dropped. While some experts are vacant, which are padded with zeros, negatively impacting model performance. To address the dropped tokens and padding, we propose the Rectify-Router, comprising the Intra-GPU Rectification and the Fill-in Rectification. The Intra-GPU Rectification handles dropped tokens, efficiently routing them to experts within the GPU where they are located to avoid inter-GPU communication. The Fill-in Rectification addresses padding by replacing padding tokens with the tokens that have high routing scores. Our experimental results demonstrate that the Intra-GPU Rectification and the Fill-in Rectification effectively handle dropped tokens and padding, respectively. Furthermore, the combination of them achieves superior performance, surpassing the accuracy of the vanilla top-1 router by 4.7%

    Flames: Benchmarking Value Alignment of Chinese Large Language Models

    Full text link
    The widespread adoption of large language models (LLMs) across various regions underscores the urgent need to evaluate their alignment with human values. Current benchmarks, however, fall short of effectively uncovering safety vulnerabilities in LLMs. Despite numerous models achieving high scores and 'topping the chart' in these evaluations, there is still a significant gap in LLMs' deeper alignment with human values and achieving genuine harmlessness. To this end, this paper proposes the first highly adversarial benchmark named Flames, consisting of 2,251 manually crafted prompts, ~18.7K model responses with fine-grained annotations, and a specified scorer. Our framework encompasses both common harmlessness principles, such as fairness, safety, legality, and data protection, and a unique morality dimension that integrates specific Chinese values such as harmony. Based on the framework, we carefully design adversarial prompts that incorporate complex scenarios and jailbreaking methods, mostly with implicit malice. By prompting mainstream LLMs with such adversarially constructed prompts, we obtain model responses, which are then rigorously annotated for evaluation. Our findings indicate that all the evaluated LLMs demonstrate relatively poor performance on Flames, particularly in the safety and fairness dimensions. Claude emerges as the best-performing model overall, but with its harmless rate being only 63.08% while GPT-4 only scores 39.04%. The complexity of Flames has far exceeded existing benchmarks, setting a new challenge for contemporary LLMs and highlighting the need for further alignment of LLMs. To efficiently evaluate new models on the benchmark, we develop a specified scorer capable of scoring LLMs across multiple dimensions, achieving an accuracy of 77.4%. The Flames Benchmark is publicly available on https://github.com/AIFlames/Flames

    Spontaneous Hall Effect enhanced by local Ir moments in epitaxial Pr2_2Ir2_2O7_7 thin films

    Get PDF
    Rare earth pyrochlore Iridates (RE2Ir2O7) consist of two interpenetrating cation sublattices, the RE with highly-frustrated magnetic moments, and the Iridium with extended conduction orbitals significantly mixed by spin-orbit interactions. The coexistence and coupling of these two sublattices create a landscape for discovery and manipulation of quantum phenomena such as the topological Hall effect, massless conduction bands, and quantum criticality. Thin films allow extended control of the material system via symmetry-lowering effects such as strain. While bulk Pr2Ir2O7 shows a spontaneous hysteretic Hall effect below 1.5K, we observe the effect at elevated temperatures up to 15K in epitaxial thin films on (111) YSZ substrates synthesized via solid phase epitaxy. Similar to the bulk, the lack of observable long-range magnetic order in the thin films points to a topological origin. We use synchrotron-based element-specific x-ray diffraction (XRD) and x-ray magnetic circular dichroism (XMCD) to compare powders and thin films to attribute the spontaneous Hall effect in the films to localization of the Ir moments. We link the thin film Ir local moments to lattice distortions absent in the bulk-like powders. We conclude that the elevated-temperature spontaneous Hall effect is caused by the topological effect originating either from the Ir or Pr sublattice, with interaction strength enhanced by the Ir local moments. This spontaneous Hall effect with weak net moment highlights the effect of vanishingly small lattice distortions as a means to discover topological phenomena in metallic frustrated magnetic materials

    Resting-state functional magnetic resonance imaging reveals brain remodeling after Tuina therapy in neuropathic pain model

    Get PDF
    Tuina, a method of traditional Chinese manual manipulation, is an effective alternative therapy for neuropathic pain (NP), but its analgesic mechanism remains unclear. In this study, we used resting-state functional magnetic resonance imaging (R-fMRI) to explore the analgesic mechanism of Tuina in an NP rat model. After undergoing surgery to induce chronic compression of the dorsal root ganglion (CCD), one group of rats underwent Tuina at the ipsilateral BL40 acupoint once a day for 10 min during the 25 days following surgery while another group did not. Behavioral tests were performed at baseline, on the third day following surgery, and once a week for the next 4 weeks. R-fMRI was performed at baseline and 7 days and 28 days following surgery. Behavioral testing revealed that the Tuina group presented a significant response improvement to mechanical and thermal nociception stimuli compared to the untreated group 2 weeks following CCD surgery. Interestingly, rats submitted to Tuina presented higher measures of spontaneous neuronal activity in basal forebrain region, primary somatosensory cortex barrel field, dentate gyrus, secondary somatosensory cortex, striatum, descending corticofugal pathways, and globus pallidum of the left hemisphere 4 weeks after the CCD surgery compared to rats having undergone CCD only. In addition, on the 28th day, the ALFF signals of the left dentate gyrus, left secondary somatosensory cortex, left striatum, and bilateral primary cingulate cortex were significantly increased while those in the right dentate gyrus and bilateral periaqueductal gray were significantly decreased compared to those on the 7th day. Correlation analysis showed that the ALFF values of the left descending corticofugal pathways and globus pallidum had a positive correlation with mechanical withdrawal threshold and paw withdrawal thermal latency tests. Altogether, these results indicate that NPP induced by CCD surgery affects the plasticity of the cerebral cortex, and that Tuina alleviate pain behavior by promoting cortical remodeling
    corecore