14 research outputs found

    High repetition frequency mode-locked semiconductor disk laser

    No full text
    A compact passively mode-locked semiconductor disk laser with a high repetition frequency of 3GHz is demonstrated. 4.9ps pulse duration and 30mW average output power are obtained with 1.4W of 808nm incident pump power. The gain chip consists of 16 compressively strained InGaAs symmetrical step quantum wells in the active region

    Semiconductor disk laser with a diamond heatspreader

    No full text
    A semiconductor disk laser with a transparent chemical vapor deposited diamond heatspreader is presented. The gain region of the semiconductor disk includes 16 noncompensated compressively strained InGaAs quantum wells. 710mW continuous-wave output powe

    Using Chiplet Encapsulation Technology to Achieve Processing-in-Memory Functions

    No full text
    With the rapid development of 5G, artificial intelligence (AI), and high-performance computing (HPC), there is a huge increase in the data exchanged between the processor and memory. However, the “storage wall” caused by the von Neumann architecture severely limits the computational performance of the system. To efficiently process such large amounts of data and break up the “storage wall”, it is necessary to develop processing-in-memory (PIM) technology. Chiplet combines processor cores and memory chips with advanced packaging technologies, such as 2.5D, 3 dimensions (3D), and fan-out packaging. This improves the quality and bandwidth of signal transmission and alleviates the “storage wall” problem. This paper reviews the Chiplet packaging technology that has achieved the function of PIM in recent years and analyzes some of its application results. First, the research status and development direction of PIM are presented and summarized. Second, the Chiplet packaging technologies that can realize the function of PIM are introduced, which are divided into 2.5D, 3D packaging, and fan-out packaging according to their physical form. Further, the form and characteristics of their implementation of PIM are summarized. Finally, this paper is concluded, and the future development of Chiplet in the field of PIM is discussed

    The Synthesis and Biological Evaluation of Aloe-Emodin-Coumarin Hybrids as Potential Antitumor Agents

    No full text
    A series of novel aloe-emodin–coumarin hybrids were designed and synthesized. The antitumor activity of these derivatives was evaluated against five human tumor cell lines (A549, SGC-7901, HepG2, MCF-7 and HCT-8). Some of the synthesized compounds exhibited moderate to good activity against one or more cell lines. Particularly, compound 5d exhibited more potent antiproliferative activity than the reference drug etoposide against all tested tumor cell lines, indicating that it had a broad spectrum of antitumor activity and that it may provide a promising lead compound for further development as an antitumor agent by structural modification. Furthermore, the structure–activity relationship study of the synthesized compounds was also performed

    Aminopyridyl/Pyrazinyl Spiro[indoline-3,4′-piperidine]-2-ones As Highly Selective and Efficacious c‑Met/ALK Inhibitors

    No full text
    A series of novel aminopyridyl/pyrazinyl-substituted spiro­[indoline-3,4′-piperidine]-2-ones were designed, synthesized, and tested in various in vitro/in vivo pharmacological and antitumor assays. 6-[6-Amino-5-[(1<i>R</i>)-1-(2,6-dichloro-3-fluorophenyl)­ethoxy]-3-pyridyl]-1′-methylspiro­[indoline-3,4′-piperidine]-2-one (compound <b>5b</b> or <b>SMU-B</b>) was identified as a potent, highly selective, well-tolerated, and orally efficacious c-Met/ALK dual inhibitor, which showed pharmacodynamics effect by inhibiting c-Met phosphorylation in vivo and significant tumor growth inhibitions (>50%) in GTL-16 human gastric carcinoma xenograft models

    >

    No full text
    We report the experimental research on the measurement and controlling of carrier envelope phase offset (CEO) with a home-made femtosecond Ti:sapphire laser, the beat frequency with a signal to noise ratio of as high as 45 dB is obtained with standard self-referencing technique. Locking the beat signal to the TV-Rb frequency standard by a phase-locked loop electronic circuit, a simple compact frequency comb was established. To further control the CEO with the technology of differenced frequency generation, we develop an ultra-broadened bandwidth femtosecond Ti:sapphire laser by balancing the dispersion with chirped mirrors, spectrum of covering from 600 nm was 1050 nm was observed. It will enable us to measure and control the CEO without photonic crystal fiber.EI

    Modulation of the p38 MAPK Pathway by Anisomycin Promotes Ferroptosis of Hepatocellular Carcinoma through Phosphorylation of H3S10

    No full text
    Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide. Ferroptosis is emerging as an effective target for tumor treatment as it has been shown to potentiate cell death in some malignancies. However, it remains unclear whether histone phosphorylation events, an epigenetic mechanism that regulates transcriptional expression, are involved in ferroptosis. Our study found that supplementation with anisomycin, an agonist of p38 mitogen-activated protein kinase (MAPK), induced ferroptosis in HCC cells, and the phosphorylation of histone H3 on serine 10 (p-H3S10) was participated in anisomycin-induced ferroptosis. To investigate the anticancer effects of anisomycin-activated p38 MAPK in HCC, we analyzed cell viability, colony formation, cell death, and cell migration in Hep3B and HCCLM3 cells. The results showed that anisomycin could significantly suppress HCC cell colony formation and migration and induce HCC cell death. The hallmarks of ferroptosis, such as abnormal accumulation of iron and elevated levels of lipid peroxidation and malondialdehyde, were detected to confirm the ability of anisomycin to promote ferroptosis. Furthermore, coincubation with SB203580, an inhibitor of activated p38 MAPK, partially rescued anisomycin-induced ferroptosis. And the levels of p-p38 MAPK and p-H3S10 were successively increased by anisomycin treatment. The relationship between p-H3S10 and ferroptosis was revealed by ChIP sequencing. The reverse transcription PCR and immunofluorescence results showed that NCOA4 was upregulated both in mRNA and protein levels after anisomycin treatment. And by C11-BODIPY staining, we found that anisomycin-induced lipid reactive oxygen species was reduced after NCOA4 knockdown. In conclusion, the anisomycin-activated p38 MAPK promoted ferroptosis of HCC cells through H3S10 phosphorylation

    Supramolecular Polymer‐Nanomedicine Hydrogel Loaded with Tumor Associated Macrophage‐Reprogramming polyTLR7/8a Nanoregulator for Enhanced Anti‐Angiogenesis Therapy of Orthotopic Hepatocellular Carcinoma

    No full text
    Abstract Anti‐angiogenic therapies targeting inhibition of vascular endothelial growth factor (VEGF) pathway show clinical benefit in hypervascular hepatocellular carcinoma (HCC) tumors. However, HCC expresses massive pro‐angiogenic factors in the tumor microenvironment (TME) in response to anti‐angiogenic therapy, recruiting tumor‐associated macrophages (TAMs), leading to revascularization and tumor progression. To regulate cell types in TME and promote the therapeutic efficiency of anti‐angiogenic therapy, a supramolecular hydrogel drug delivery system (PLDX‐PMI) co‐assembled by anti‐angiogenic nanomedicines (PCN‐Len nanoparticles (NPs)) and oxidized dextran (DX), and loaded with TAMs‐reprogramming polyTLR7/8a nanoregulators (p(Man‐IMDQ) NRs) is developed for orthotopic liver cancer therapy. PCN‐Len NPs target tyrosine kinases of vascular endothelial cells and blocked VEGFR signaling pathway. p(Man‐IMDQ) NRs repolarize pro‐angiogenic M2‐type TAMs into anti‐angiogenic M1‐type TAMs via mannose‐binding receptors, reducing the secretion of VEGF, which further compromised the migration and proliferation of vascular endothelial cells. On highly malignant orthotopic liver cancer Hepa1‐6 model, it is found that a single administration of the hydrogel formulation significantly decreases tumor microvessel density, promotes tumor vascular network maturation, and reduces M2‐subtype TAMs, thereby effectively inhibiting tumor progression. Collectively, findings in this work highlight the great significance of TAMs reprogramming in enhancing anti‐angiogenesis treatment for orthotopic HCC, and provides an advanced hydrogel delivery system‐based synergistic approach for tumor therapy
    corecore