74 research outputs found
Findings from the Longitudinal CINRG Becker Natural History Study
BACKGROUND: Becker muscular dystrophy is an X-linked, genetic disorder causing progressive degeneration of skeletal and cardiac muscle, with a widely variable phenotype. OBJECTIVE: A 3-year, longitudinal, prospective dataset contributed by patients with confirmed Becker muscular dystrophy was analyzed to characterize the natural history of this disorder. A better understanding of the natural history is crucial to rigorous therapeutic trials. METHODS: A cohort of 83 patients with Becker muscular dystrophy (5-75 years at baseline) were followed for up to 3 years with annual assessments. Muscle and pulmonary function outcomes were analyzed herein. Age-stratified statistical analysis and modeling were conducted to analyze cross-sectional data, time-to-event data, and longitudinal data to characterize these clinical outcomes. RESULTS: Deletion mutations of dystrophin exons 45-47 or 45-48 were most common. Subgroup analysis showed greater pairwise association between motor outcomes at baseline than association between these outcomes and age. Stronger correlations between outcomes for adults than for those under 18 years were also observed. Using cross-sectional binning analysis, a ceiling effect was seen for North Star Ambulatory Assessment but not for other functional outcomes. Longitudinal analysis showed a decline in percentage predicted forced vital capacity over the life span. There was relative stability or improved median function for motor functional outcomes through childhood and adolescence and decreasing function with age thereafter. CONCLUSIONS: There is variable progression of outcomes resulting in significant heterogeneity of the clinical phenotype of Becker muscular dystrophy. Disease progression is largely manifest in adulthood. There are implications for clinical trial design revealed by this longitudinal analysis of a Becker natural history dataset
Pathway of Toll-Like Receptor 7/B Cell Activating Factor/B Cell Activating Factor Receptor Plays a Role in Immune Thrombocytopenia In Vivo
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by anti-platelet autoantibody-mediated platelet destruction. Antigen-presenting cell (APC) dysfunction is considered to play crucial roles in ITP. However, how APC affects autoreactive B cells in ITP is still unknown. Using a mouse model of immune thrombocytopenia, we demonstrated an increase in levels of TLR7 in splenic mononuclear cells (SMCs). Using both TLR7 agonist and TLR7 silencing lentivirus, we found stimulation of TLR7 decreased platelet counts and increased levels of platelet-associated IgG (PAIgG) in ITP mice, which correlates TLR7 with platelet destruction by autoantibodies. Levels of serum BAFF increased significantly in ITP mice and stimulation of TLR7 promoted secretion of BAFF. Among the three BAFF receptors, only BAFF receptor (BAFF-R) increased in ITP mice. However, activation of TLR7 showed no effect on the expression of BAFF receptors. These findings indicate that upregulation of TLR7 may augment BAFF secretion by APC and through ligation of BAFF-R promote autoreactive B cell survival and thus anti-platelet autoantibody production. The pathway of TLR7/BAFF/BAFF-R provides us with an explanation of how activation of APC affects autoantibody production by B cells in ITP and thus might provide a reasonable therapeutic strategy for ITP
DRB1*03:01 Haplotypes: Differential Contribution to Multiple Sclerosis Risk and Specific Association with the Presence of Intrathecal IgM Bands
BACKGROUND: Multiple sclerosis (MS) is a multifactorial disease with a genetic basis. The strongest associations with the disease lie in the Human Leukocyte Antigen (HLA) region. However, except for the DRB1*15:01 allele, the main risk factor associated to MS so far, no consistent effect has been described for any other variant. One example is HLA-DRB1*03:01, with a heterogeneous effect across populations and studies. We postulate that those discrepancies could be due to differences in the diverse haplotypes bearing that allele. Thus, we aimed at studying the association of DRB1*03:01 with MS susceptibility considering this allele globally and stratified by haplotypes. We also evaluated the association with the presence of oligoclonal IgM bands against myelin lipids (OCMB) in cerebrospinal fluid. METHODS: Genotyping of HLA-B, -DRB1 and -DQA1 was performed in 1068 MS patients and 624 ethnically matched healthy controls. One hundred and thirty-nine MS patients were classified according to the presence (M+, 58 patients)/absence (M-, 81 patients) of OCMB. Comparisons between groups (MS patients vs. controls and M+ vs. M-) were performed with the chi-square test or the Fisher exact test. RESULTS: Association of DRB1*03:01 with MS susceptibility was observed but with different haplotypic contribution, being the ancestral haplotype (AH) 18.2 the one causing the highest risk. Comparisons between M+, M- and controls showed that the AH 18.2 was affecting only M+ individuals, conferring a risk similar to that caused by DRB1*15:01. CONCLUSIONS: The diverse DRB1*03:01-containing haplotypes contribute with different risk to MS susceptibility. The AH 18.2 causes the highest risk and affects only to individuals showing OCMB
BAFF Promotes Th17 Cells and Aggravates Experimental Autoimmune Encephalomyelitis
BAFF, in addition to promoting B cell survival and differentiation, may affect T cells. The objective of this study was to determine the effect of BAFF on Th17 cell generation and its ramifications for the Th17 cell-driven disease, EAE.Th17 cells were increased in BAFF-Tg B6 (B6.BTg) mice and decreased in B6.Baff(-/-) mice. Th17 cells in B6.Baff(-/-) mice bearing a BAFF Tg (B6.Baff(-/-).BTg mice) were identical to those in B6.BTg mice, indicating that membrane BAFF is dispensable for Th17 cell generation as long as soluble BAFF is plentiful. In T + non-T cell criss-cross co-cultures, Th17 cell generation was greatest in cultures containing B6.BTg T cells and lowest in cultures containing B6.Baff(-/-) T cells, regardless of the source of non-T cells. In cultures containing only T cells, Th17 cell generation followed an identical pattern. CD4(+) cell expression of CD126 (IL-6R α chain) was increased in B6.BTg mice and decreased in B6.Baff(-/-) mice, and activation of STAT3 following stimulation with IL-6 + TGF-β was also greatest in B6.BTg cells and lowest in B6.Baff(-/-) cells. EAE was clinically and pathologically most severe in B6.BTg mice and least severe in B6.Baff(-/-) mice and correlated with MOG(35-55) peptide-induced Th17 cell responses.Collectively, these findings document a contribution of BAFF to pathogenic Th17 cell responses and suggest that BAFF antagonism may be efficacious in Th17 cell-driven diseases
B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity
<p>Abstract</p> <p>Background</p> <p>The etiology of the neurogenerative disease multiple sclerosis (MS) is unknown. The leading hypotheses suggest that MS is the result of exposure of genetically susceptible individuals to certain environmental factor(s). Herpesviruses and human endogenous retroviruses (HERVs) represent potentially important factors in MS development. Herpesviruses can activate HERVs, and HERVs are activated in MS patients.</p> <p>Results</p> <p>Using flow cytometry, we have analyzed HERV-H Env and HERV-W Env epitope expression on the surface of PBMCs from MS patients with active and stable disease, and from control individuals. We have also analyzed serum antibody levels to the expressed HERV-H and HERV-W Env epitopes. We found a significantly higher expression of HERV-H and HERV-W Env epitopes on B cells and monocytes from patients with active MS compared with patients with stable MS or control individuals. Furthermore, patients with active disease had relatively higher numbers of B cells in the PBMC population, and higher antibody reactivities towards HERV-H Env and HERV-W Env epitopes. The higher antibody reactivities in sera from patients with active MS correlate with the higher levels of HERV-H Env and HERV-W Env expression on B cells and monocytes. We did not find such correlations for stable MS patients or for controls.</p> <p>Conclusion</p> <p>These findings indicate that both HERV-H Env and HERV-W Env are expressed in higher quantities on the surface of B cells and monocytes in patients with active MS, and that the expression of these proteins may be associated with exacerbation of the disease.</p
Cracking the BAFF code.
The tumour necrosis factor (TNF) family members B cell activating factor (BAFF) and APRIL (a proliferation-inducing ligand) are crucial survival factors for peripheral B cells. An excess of BAFF leads to the development of autoimmune disorders in animal models, and high levels of BAFF have been detected in the serum of patients with various autoimmune conditions. In this Review, we consider the possibility that in mice autoimmunity induced by BAFF is linked to T cell-independent B cell activation rather than to a severe breakdown of B cell tolerance. We also outline the mechanisms of BAFF signalling, the impact of ligand oligomerization on receptor activation and the progress of BAFF-depleting agents in the clinical setting
Gene Expression Analysis Implicates a Death Receptor Pathway in Schizophrenia Pathology
An increase in apoptotic events may underlie neuropathology in schizophrenia. By data-mining approaches, we identified significant expression changes in death receptor signaling pathways in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia, particularly implicating the Tumor Necrosis Factor Superfamily member 6 (FAS) receptor and the Tumor Necrosis Factor [ligand] Superfamily member 13 (TNFSF13) in schizophrenia. We sought to confirm and replicate in an independent tissue collection the noted mRNA changes with quantitative real-time RT-PCR. To test for regional and diagnostic specificity, tissue from orbital frontal cortex (OFC) was examined and a bipolar disorder group included. In schizophrenia, we confirmed and replicated significantly increased expression of TNFSF13 mRNA in the DLPFC. Also, a significantly larger proportion of subjects in the schizophrenia group had elevated FAS receptor expression in the DLPFC relative to unaffected controls. These changes were not observed in the bipolar disorder group. In the OFC, there were no significant differences in TNFSF13 or FAS receptor mRNA expression. Decreases in BH3 interacting domain death agonist (BID) mRNA transcript levels were found in the schizophrenia and bipolar disorder groups affecting both the DLPFC and the OFC. We tested if TNFSF13 mRNA expression correlated with neuronal mRNAs in the DLPFC, and found significant negative correlations with interneuron markers, parvalbumin and somatostatin, and a positive correlation with PPP1R9B (spinophilin), but not DLG4 (PSD-95). The expression of TNFSF13 mRNA in DLPFC correlated negatively with tissue pH, but decreasing pH in cultured cells did not cause increased TNFSF13 mRNA nor did exogenous TNFSF13 decrease pH. We concluded that increased TNFSF13 expression may be one of several cell-death cytokine abnormalities that contribute to the observed brain pathology in schizophrenia, and while increased TNFSF13 may be associated with lower brain pH, the change is not necessarily causally related to brain pH
- …