99 research outputs found

    Inhibition of interferon-signalling halts cancer-associated fibroblast-dependent protection of breast cancer cells from chemotherapy

    Get PDF
    Background Triple negative breast cancers (TNBC) have poor prognoses despite aggressive treatment with cytotoxic chemotherapy. Cancer-associated fibroblasts (CAFs) are prominent in tumour stroma. Our hypothesis was that CAFs modulate chemotherapy sensitivity. Methods TNBC cells and breast fibroblasts were cultured; survival after chemotherapeutics was assessed using luciferase or clonogenic assays. Signalling was investigated using transcriptomics, reporters, recombinant proteins and blocking antibodies. Clinical relevance was investigated using immunohistochemistry. Results Breast CAFs dose-dependently protected TNBC cell lines MDA-MB-231 and MDA-MB-157, but not MDA-MB-468s, from chemotherapy. CAF-induced protection was associated with interferon (IFN) activation. CAFs were induced to express IFNβ1 by chemotherapy and TNBC co-culture, leading to paracrine activation in cancer cells. Recombinant IFNs were sufficient to protect MDA-MB-231 and MDA-MB-157 but not MDA-MB-468 cells. In TNBC patients, IFNβ1 expression in CAFs correlated with cancer cell expression of MX1, a marker of activated IFN signalling. High expression of IFNβ1 (CAFs) or MX1 (tumour cells) correlated with reduced survival after chemotherapy, especially in claudin-low tumours (which MDA-MB-231 and MDA-MB-157 cells represent). Antibodies that block IFN receptors reduced CAF-dependent chemoprotection. Conclusions CAF-induced activation of IFN signalling in claudin-low TNBCs results in chemoresistance. Inhibition of this pathway represents a novel method to improve breast cancer outcomes

    ONCOR: design of the Dutch cardio-oncology registry

    Get PDF
    Background: The relative new subspecialty ‘cardio-oncology’ was established to meet the growing demand for an interdisciplinary approach to the management of cancer therapy–related cardiovascular adverse events. In recent years, specialised cardio-oncology services have been implemented worldwide, which all strive to improve the cardiovascular health of cancer patients. However, limited data are currently available on the outcomes and experiences of these specialised services, and optimal strategies for cardio-oncological care have not been established. / Aim: The ONCOR registry has been created for prospective data collection and evaluation of cardio-oncological care in daily practice. / Methods: Dutch hospitals using a standardised cardio-oncology care pathway are included in this national, multicentre, observational cohort study. All patients visiting these cardio-oncology services are eligible for study inclusion. Data collection at baseline consists of the (planned) cancer treatment and the cardiovascular risk profile, which are used to estimate the cardiotoxic risk. Information regarding invasive and noninvasive tests is collected during the time patients receive cardio-oncological care. Outcome data consist of the incidence of cardiovascular complications and major adverse cardiac events, and the impact of these events on the oncological treatment. / Discussion: Outcomes of the ONCOR registry may aid in gaining more insight into the incidence of cancer therapy–related cardiovascular complications. The registry facilitates research on mechanisms of cardiovascular complications and on diagnostic, prognostic and therapeutic strategies. In addition, it provides a platform for future (interventional) studies. Centres with cardio-oncology services that are interested in contributing to the ONCOR registry are hereby invited to participate

    The prevalence of pulmonary hypertension assessed using the pulmonary vein‐to‐right pulmonary artery ratio and its association with survival in West Highland white terriers with canine idiopathic pulmonary fibrosis

    Get PDF
    Background: Pulmonary hypertension (PH) is a known co-morbidity in West Highland white terriers (WHWTs) affected with canine idiopathic pulmonary fibrosis (CIPF). The pulmonary vein-to-right pulmonary artery ratio (PV/ PA) has recently been described for the detection of pre-capillary PH in dogs. The objective of the present study was to estimate the prevalence of PH at diagnostic, in WHWTs affected with CIPF, by using PV/PA, in comparison with a group of healthy breed-matched controls (CTRLs). Additional study objective was to expl

    MiR-19b non-canonical binding is directed by HuR and confers chemosensitivity through regulation of P-glycoprotein in breast cancer

    Get PDF
    MicroRNAs and RNA-binding proteins exert regulation on >60% of coding genes, yet interplay between them is little studied. Canonical microRNA binding occurs by base-pairing of microRNA 3′-ends to complementary “seed regions” in mRNA 3′UTRs, resulting in translational repression. Similarly, regulatory RNA-binding proteins bind to mRNAs, modifying stability or translation. We investigated post-transcriptional regulation acting on the xenobiotic pump ABCB1/P-glycoprotein, which is implicated in cancer therapy resistance. We characterised the ABCB1 UTRs in primary breast cancer cells and identified UTR sequences that responded to miR-19b despite lacking a canonical binding site. Sequences did, however, contain consensus sites for the RNA-binding protein HuR. We demonstrated that a tripartite complex of HuR, miR-19b and UTR directs repression of ABCB1/P-glycoprotein expression, with HuR essential for non-canonical miR-19b binding thereby controlling chemosensitivity of breast cancer cells. This exemplifies a new cooperative model between RNA-binding proteins and microRNAs to expand the repertoire of mRNAs that can be regulated. This study suggests a novel therapeutic target to impair P-glycoprotein mediated drug efflux, and also indicates that current microRNA binding predictions that rely on seed regions alone may be too conservative

    Biventricular myocardial strain analysis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) using cardiovascular magnetic resonance feature tracking

    Get PDF
    BACKGROUND: Fibrofatty degeneration of myocardium in ARVC is associated with wall motion abnormalities. The aim of this study was to examine whether Cardiovascular Magnetic Resonance (CMR) based strain analysis using feature tracking (FT) can serve as a quantifiable measure to confirm global and regional ventricular dysfunction in ARVC patients and support the early detection of ARVC. METHODS: We enrolled 20 patients with ARVC, 30 with borderline ARVC and 22 subjects with a positive family history but no clinical signs of a manifest ARVC. 10 healthy volunteers (HV) served as controls. 15 ARVC patients received genotyping for Plakophilin-2 mutation (PKP-2), of which 7 were found to be positive. Cine MR datasets of all subjects were assessed for myocardial strain using FT (TomTec Diogenes Software). Global strain and strain rate in radial, circumferential and longitudinal mode were assessed for the right and left ventricle. In addition strain analysis at a segmental level was performed for the right ventricular free wall. RESULTS: RV global longitudinal strain rates in ARVC (−0.68 ± 0.36 sec(−1)) and borderline ARVC (−0.85 ± 0.36 sec(−1)) were significantly reduced in comparison with HV (−1.38 ± 0.52 sec(−1), p ≤ 0.05). Furthermore, in ARVC patients RV global circumferential strain and strain rates at the basal level were significantly reduced compared with HV (strain: −5.1 ± 2.7 vs. -9.2 ± 3.6%; strain rate: −0.31 ± 0.13 sec(−1) vs. -0.61 ± 0.21 sec(−1)). Even for patients with ARVC or borderline ARVC and normal RV ejection fraction (n=30) global longitudinal strain rate proved to be significantly reduced compared with HV (−0.9 ± 0.3 vs. -1.4 ± 0.5 sec(−1); p < 0.005). In ARVC patients with PKP-2 mutation there was a clear trend towards a more pronounced impairment in RV global longitudinal strain rate. On ROC analysis RV global longitudinal strain rate and circumferential strain rate at the basal level proved to be the best discriminators between ARVC patients and HV (AUC: 0.9 and 0.92, respectively). CONCLUSION: CMR based strain analysis using FT is an objective and useful measure for quantification of wall motion abnormalities in ARVC. It allows differentiation between manifest or borderline ARVC and HV, even if ejection fraction is still normal

    Good agreement of conventional and gel-based direct agglutination test in immune-mediated haemolytic anaemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to compare a gel-based test with the traditional direct agglutination test (DAT) for the diagnosis of immune-mediated haemolytic anaemia (IMHA).</p> <p>Methods</p> <p>Canine (n = 247) and feline (n = 74) blood samples were submitted for DAT testing to two laboratories. A subset of canine samples was categorized as having idiopathic IMHA, secondary IMHA, or no IMHA.</p> <p>Results</p> <p>The kappa values for agreement between the tests were in one laboratory 0.86 for canine and 0.58 for feline samples, and in the other 0.48 for canine samples. The lower agreement in the second laboratory was caused by a high number of positive canine DATs for which the gel test was negative. This group included significantly more dogs with secondary IMHA.</p> <p>Conclusions</p> <p>The gel test might be used as a screening test for idiopathic IMHA and is less often positive in secondary IMHA than the DAT.</p

    Characterization of Microbialites and Microbial Mats of the Laguna Negra Hypersaline Lake (Puna of Catamarca, Argentina)

    Get PDF
    Microbial carbonates provide an invaluable tool to understand biogeochemical processes in aqueous systems, especially in lacustrine and marine environments. Lakes are strongly sensitive to climatically driven environmental changes, and microbialites have recently been shown to provide a record of these changes. Unraveling physicochemical and microbiological controls on carbonates textures and geochemistry is necessary to correctly interpret these signals and the microbial biosphere record within sedimentary carbonates. The Laguna Negra is a high-altitude hypersaline Andean lake (Puna of Catamarca, Argentina), where abundant carbonate precipitation takes place and makes this system an interesting example that preserves a spectrum of carbonate fabrics reflecting complex physical, chemical, and biological interactions. The extreme environmental conditions (high UV radiation, elevated salinity, and temperature extremes) make the Laguna Negra a good analogue to some Precambrian microbialites (e.g., Tumbiana Fm., Archean, Australia). In addition, the discovery of ancient evaporating playa-lake systems on Mars’ surface (e.g., ShalbatanaVallis, Noachian, Mars) highlights the potential of Laguna Negra to provide insight into biosignature preservation in similar environments, in both terrestrial and extraterrestrial settings, given that microbial processes in the Laguna Negra can be studied with remarkable detail.Fil: Boidi, Flavia Jaquelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Mlewski, Estela Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Gomez, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Gérard, Emmanuelle. Centre National de la Recherche Scientifique; Franci

    Microbial Activities and Dissolved Organic Matter Dynamics in Oil-Contaminated Surface Seawater from the Deepwater Horizon Oil Spill Site

    Get PDF
    The Deepwater Horizon oil spill triggered a complex cascade of microbial responses that reshaped the dynamics of heterotrophic carbon degradation and the turnover of dissolved organic carbon (DOC) in oil contaminated waters. Our results from 21-day laboratory incubations in rotating glass bottles (roller bottles) demonstrate that microbial dynamics and carbon flux in oil-contaminated surface water sampled near the spill site two weeks after the onset of the blowout were greatly affected by activities of microbes associated with macroscopic oil aggregates. Roller bottles with oil-amended water showed rapid formation of oil aggregates that were similar in size and appearance compared to oil aggregates observed in surface waters near the spill site. Oil aggregates that formed in roller bottles were densely colonized by heterotrophic bacteria, exhibiting high rates of enzymatic activity (lipase hydrolysis) indicative of oil degradation. Ambient waters surrounding aggregates also showed enhanced microbial activities not directly associated with primary oil-degradation (β-glucosidase; peptidase), as well as a twofold increase in DOC. Concurrent changes in fluorescence properties of colored dissolved organic matter (CDOM) suggest an increase in oil-derived, aromatic hydrocarbons in the DOC pool. Thus our data indicate that oil aggregates mediate, by two distinct mechanisms, the transfer of hydrocarbons to the deep sea: a microbially-derived flux of oil-derived DOC from sinking oil aggregates into the ambient water column, and rapid sedimentation of the oil aggregates themselves, serving as vehicles for oily particulate matter as well as oil aggregate-associated microbial communities
    • …
    corecore