143 research outputs found
Measurements of , , , and proton production in proton-carbon interactions at 31 GeV/ with the NA61/SHINE spectrometer at the CERN SPS
Measurements of hadron production in p+C interactions at 31 GeV/c are
performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is
based on the full set of data collected in 2009 using a graphite target with a
thickness of 4% of a nuclear interaction length. Inelastic and production cross
sections as well as spectra of , , p, and are
measured with high precision. These measurements are essential for improved
calculations of the initial neutrino fluxes in the T2K long-baseline neutrino
oscillation experiment in Japan. A comparison of the NA61/SHINE measurements
with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the
final published versio
Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron
Measurements of multiplicity and transverse momentum fluctuations of charged
particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and
158 GeV/c beam momentum. Results for the scaled variance of the multiplicity
distribution and for three strongly intensive measures of multiplicity and
transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and
\$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations
are fully corrected for experimental biases. The results on multiplicity and
transverse momentum fluctuations significantly deviate from expectations for
the independent particle production. They also depend on charges of selected
hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe
the data. The scaled variance of multiplicity fluctuations is significantly
higher in inelastic p+p interactions than in central Pb+Pb collisions measured
by NA49 at the same energy per nucleon. This is in qualitative disagreement
with the predictions of the Wounded Nucleon Model. Within the statistical
framework the enhanced multiplicity fluctuations in inelastic p+p interactions
can be interpreted as due to event-by-event fluctuations of the fireball energy
and/or volume.Comment: 18 pages, 12 figure
Measurements of , K, p and spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS
Measurements of inclusive spectra and mean multiplicities of ,
K, p and produced in inelastic p+p interactions at
incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ( 6.3,
7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super
Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer.
Spectra are presented as function of rapidity and transverse momentum and are
compared to predictions of current models. The measurements serve as the
baseline in the NA61/SHINE study of the properties of the onset of
deconfinement and search for the critical point of strongly interacting matter
Control system for ion Penning traps at the AEgIS experiment at CERN
The AEgIS experiment located at the Antiproton Decelerator at CERN aims to measure the gravitational fall of a cold antihydrogen pulsed beam. The precise observation of the antiatoms in the Earth gravitational field requires a controlled production and manipulation of antihydrogen. The neutral antimatter is obtained via a charge exchange reaction between a cold plasma of antiprotons from ELENA decelerator and a pulse of Rydberg positronium atoms. The current custom electronics designed to operate the 5 and 1 T Penning traps are going to be replaced by a control system based on the ARTIQ & Sinara open hardware and software ecosystem. This solution is present in many atomic, molecular and optical physics experiments and devices such as quantum computers. We report the status of the implementation as well as the main features of the new control system
Development of a detector for inertial sensing of positronium at AEgIS (CERN)
The primary goal of the AEgIS collaboration at CERN is to measure the gravitational acceleration on neutral antimatter. Positronium (Ps), the bound state of an electron and a positron, is a suitable candidate for a force-sensitive inertial measurement by means of deflectometry/interferometry. In order to conduct such an experiment, the impact position and time of arrival of Ps atoms at the detector must be detected simultaneously. The detection of a low-velocity Ps beam with a spatial resolution of (88 ± 5) μm was previously demonstrated [1]. Based on the methodology employed in [1] and [2], a hybrid imaging/timing detector with increased spatial resolution of about 10 μm was developed. The performance of a prototype was tested with a positron beam. The concept of the detector and first results are presented
High-resolution MCP-TimePix3 imaging/timing detector for antimatter physics
We present a hybrid imaging/timing detector for force sensitive inertial measurements designed for measurements on positronium, the metastable bound state of an electron and a positron, but also suitable for applications involving other low intensity, low energy beams of neutral (antimatter)-atoms, such as antihydrogen. The performance of the prototype detector was evaluated with a tunable low energy positron beam, resulting in a spatial resolution of approximate t
Positronium laser cooling via the - transition with a broadband laser pulse
We report on laser cooling of a large fraction of positronium (Ps) in
free-flight by strongly saturating the - transition with a
broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is
produced in a magnetic and electric field-free environment. We observe two
different laser-induced effects. The first effect is an increase in the number
of atoms in the ground state after the time Ps has spent in the long-lived
states. The second effect is the one-dimensional Doppler cooling of Ps,
reducing the cloud's temperature from 380(20) K to 170(20) K. We demonstrate a
58(9) % increase in the coldest fraction of the Ps ensemble.Comment: 6 pages, 5 figure
Measurements of production in Be + Be collisions at beam momenta from 19A to 150 in the NA61/SHINE experiment at the CERN SPS
The NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) studies the onset of deconfinement in hadron matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of , , p and produced in the 20% most centralBe+Be collisions at beam momenta of 19A, 30A, 40A, 75A and 150A . The energy dependence of the / ratios as well as of inverse slope parameters of the transverse mass distributions are close to those found in inelastic p+p reactions. The new results are compared to the world data on p+p and Pb+Pb collisions as well as to predictions of the Epos, Urqmd, Ampt, Phsd and Smash models
- …