1,538 research outputs found

    Thermal Gasification of Densified Sewage Sludge and Solid Waste

    Get PDF
    The disposal of sewage sludge in an economic and environmentally acceptable manner is a problem common to all communities that have municipal wastewater treatment facilities. Similarly, all communities are faced with the disposal of increasing quantities of solid waste. The co-disposal of sludge and solid waste in a common facility is a potential solution to both of these problems. The results of an experimental program to verify the feasibility of the gasification process for the co-disposal of densified sludge and source separated solid waste are presented in this paper

    Gasification of Densified Sludge and Wastepaper in a Downdraft Packed-Bed Gasifier

    Get PDF
    The co-disposal of densified sludge and wastepaper in a co-current flow packed bed gasifier represents new application of the thermal gasification process. Advantages of this technology include lower costs than other incineration or pyrolysis technologies, simple construction and operation, and the ability to use a variety of fuels including agricultural wastes and other biomass materials in addition to densified sludge and wastepaper

    Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment

    Get PDF
    The accumulation of the denitrification intermediates in wastewater treatment systems is highly undesirable, since both nitrite and nitric oxide (NO) are known to be toxic to bacteria, and nitrous oxide (N2O) is a potent greenhouse gas and an ozone depleting substance. To date, two distinct concepts for the modelling of denitrification have been proposed, which are represented by the Activated Sludge Model for Nitrogen (ASMN) and the Activated Sludge Model with Indirect Coupling of Electrons (ASM-ICE), respectively. The two models are fundamentally different in describing the electron allocation among different steps of denitrification. In this study, the two models were examined and compared in their ability to predict the accumulation of denitrification intermediates reported in four different experimental datasets in literature. The N-oxide accumulation predicted by the ASM-ICE model was in good agreement with values measured in all four cases, while the ASMN model was only able to reproduce one of the four cases. The better performance of the ASM-ICE model is due to that it adopts an “indirect coupling” modelling concept through electron carriers to link the carbon oxidation and the nitrogen reduction processes, which describes the electron competition well. The ASMN model, on the other hand, is inherently limited by its structural deficiency in assuming that carbon oxidation is always able to meet the electron demand by all denitrification steps, therefore discounting electron competition among these steps. ASM-ICE therefore offers a better tool for predicting and understanding intermediates accumulation in biological denitrification

    Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent

    Full text link
    The present paper presents a submerged anaerobic membrane bioreactor (SAnMBR) as a sustainable approach for urban wastewater treatment at 33 and 20 C, since greenhouse gas emissions are reduced and energy recovery is enhanced. Compared to other anaerobic systems, such as UASB reactors, the membrane technology allows the use of biogas-assisted mixing which enhances the methane stripping from the liquid phase bulk. The methane saturation index obtained for the whole period (1.00 ± 0.04) evidenced that the equilibrium condition was reached and the methane loss with the effluent was reduced. The methane recovery efficiency obtained at 20 C (53.6%) was slightly lower than at 33 C (57.4%) due to a reduction of the treatment efficiency, as evidenced by the lower methane production and the higher waste sludge per litre of treated wastewater. For both operational temperatures, the methane recovery efficiency was strongly affected by the high sulphate concentration in the influent wastewater.This research work has been supported by the Spanish Research Foundation (CICYT Projects CTM2008-06809-C02-01 and CTM2008-06809-C02-02) and the Comunidad Valenciana Regional Government (GVACOMP2009-285), which are gratefully acknowledged.Gimenez, J.; Martí, N.; Ferrer, J.; Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology. 118:67-72. https://doi.org/10.1016/j.biortech.2012.05.019S677211

    Temporal and Spatial Pore Water Pressure Distribution Surrounding a Vertical Landfill Leachate Recirculation Well

    Get PDF
    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth

    Heat management strategies for MSW landfills

    Get PDF
    Heat is a primary byproduct of landfilling of municipal solid waste. Long-term elevated temperatures have been reported for MSW landfills under different operational conditions and climatic regions around the world. A conceptual framework is presented for management of the heat generated in MSW landfills. Three main strategies are outlined: extraction, regulation, and supplementation. Heat extraction allows for beneficial use of the excess landfill heat as an alternative energy source. Two approaches are provided for the extraction strategy: extracting all of the excess heat above baseline equilibrium conditions in a landfill and extracting only a part of the excess heat above equilibrium conditions to obtain target optimum waste temperatures for maximum gas generation. Heat regulation allows for controlling the waste temperatures to achieve uniform distribution at target levels at a landfill facility. Two approaches are provided for the regulation strategy: redistributing the excess heat across a landfill to obtain uniform target optimum waste temperatures for maximum gas generation and redistributing the excess heat across a landfill to obtain specific target temperatures. Heat supplementation allows for controlling heat generation using external thermal energy sources to achieve target waste temperatures. Two approaches are provided for the supplementation strategy: adding heat to the waste mass using an external energy source to increase waste temperatures and cooling the waste mass using an external energy source to decrease waste temperatures. For all strategies, available landfill heat energy is determined based on the difference between the waste temperatures and the target temperatures. Example analyses using data from landfill facilities with relatively low and high heat generation indicated thermal energy in the range of −48.4 to 72.4 MJ/m3 available for heat management. Further modeling and experimental analyses are needed to verify the effectiveness and feasibility of design, installation, and operation of heat management systems in MSW landfills

    Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media

    Get PDF
    The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets

    Emissions of C&D refuse in landfills: a European case

    Get PDF
    ABSTRACT: A field study was developed in a new landfill for refuse from construction and demolition (C&D) material recovery plants of small size (4 Ha.) in Europe, with the aim of evaluating the liquid and gas emissions in this type of facility at a large scale. It included characterization of the materials, monitoring leachate and gas quantity and composition. Besides thermometers, piezometers and sampling ports were placed in several points within the waste. This paper presents the data obtained for five years of the landfill life. The materials disposed were mainly made up of wood and concrete, similar to other C&D debris sites, but the amount of gypsum drywall (below 3% of the waste) was significantly smaller than other available studies, where percentages above 20% had been reported. Leachate contained typical C&D pollutants, such as different inorganic ions and metals, some of which exceeded other values reported in the literature (conductivity, ammonium, lead and arsenic). The small net precipitation in the area and the leachate recirculation into the landfill surface help explain these higher concentrations, thus highlighting the impact of liquid to solid (L/S) ratio on leachate characteristics. In contrast to previous studies, neither odor nuisances nor significant landfill gas over the surface were detected. However, gas samples taken from the landfill inside revealed sulfate reducing and methanogenic activity
    corecore