1,730 research outputs found

    A transient solution for vesicle electrodeformation and relaxation

    Full text link
    A transient analysis for vesicle deformation under DC electric fields is developed. The theory extends from a droplet model, with the additional consideration of a lipid membrane separating two fluids of arbitrary properties. For the latter, both a membrane-charging and a membrane-mechanical model are supplied. The vesicle is assumed to remain spheroidal in shape for all times. The main result is an ODE governing the evolution of the vesicle aspect ratio. The effects of initial membrane tension and pulse length are examined. The model prediction is extensively compared with experimental data, and is shown to accurately capture the system behavior in the regime of no or weak electroporation. More importantly, the comparison reveals that vesicle relaxation obeys a universal behavior regardless of the means of deformation. The process is governed by a single timescale that is a function of the vesicle initial radius, the fluid viscosity, and the initial membrane tension. This universal scaling law can be used to calculate membrane properties from experimental data

    Airport 4.0 : technology adoption framework for airports (TAFA)

    Get PDF
    Airports have taken centre stage in the fight against the ongoing COVID-19 pandemic, and adoption of technologies has been instrumental in helping airport operators to mitigate operational and health concerns relating to the pandemic. A novel framework for the adoption of Industry 4.0 technologies was developed based on the insights gathered from an industry survey of 102 airport operators and managers around the world and 17 semi-structured interviews. The framework provides a ‘three-proof’ approach (proof of technology, proof of operations and proof of business) to guide airport operators in their decision-making process in adopting Industry 4.0 technologies in airports. This framework is further verified through a case study of the technology implementation efforts of a leading Asian airport

    Industry 4.0 : challenges and success factors for adopting digital technologies in airports

    Get PDF
    With the advent of Industry 4.0 technologies in the last decade, airports have undergone digitalisation to capitalise on the purported benefits of these technologies such as improved operational efficiency and passenger experience. The ongoing COVID-19 pandemic with emergence of its variants (e.g. Delta, Omicron) has exacerbated the need for airports to adopt new technologies such as contactless and robotic technologies to facilitate travel during this pandemic. However, there is limited knowledge of recent challenges and success factors for adoption of digital technologies in airports. Therefore, through an industry survey of airport operators and managers around the world (n=102, 0.75

    Adoption of Industry 4.0 technologies in airports -- A systematic literature review

    Get PDF
    Airports have been constantly evolving and adopting digital technologies to improve operational efficiency, enhance passenger experience, generate ancillary revenues and boost capacity from existing infrastructure. The COVID-19 pandemic has also challenged airports and aviation stakeholders alike to adapt and manage new operational challenges such as facilitating a contactless travel experience and ensuring business continuity. Digitalisation using Industry 4.0 technologies offers opportunities for airports to address short-term challenges associated with the COVID-19 pandemic while also preparing for future long-term challenges that ensue the crisis. Through a systematic literature review of 102 relevant articles, we discuss the current state of adoption of Industry 4.0 technologies in airports, the associated challenges as well as future research directions. The results of this review suggest that the implementation of Industry 4.0 technologies is slowly gaining traction within the airport environment, and shall continue to remain relevant in the digital transformation journeys in developing future airports

    Surface Chern-Simons theory for third-order topological insulators and superconductors

    Full text link
    Three-dimensional 3rd-order topological insulators (TOTIs) and superconductors (TOTSCs), as the highestorder topological phases hosting zero corner modes in physical dimension, has sparked extensive research interest. However, such topological states have not been discovered in reality due to the lack of experimental schemes of realization. Here, we propose a novel surface Chern-Simons (CS) theory for 3rd-order topological phases, and show that the theory enables a feasible and systematic design of TOTIs and TOTSCs. We show that the emergence of zero Dirac (Majorana) corner modes is entirely captured by an emergent Z2\mathbb{Z}_{2} CS term that can be further characterized by a novel two-particle Wess-Zumino (WZ) term uncovered here in the surfaces of three-dimensional topological materials. Importantly, our proposed CS term characterization and two-particle WZ term mechanism provide a unique perspective to design TOTIs (TOTSCs) in terms of minimal ingredients, feasibly guiding the search for underlying materials, with promising candidates being discussed. This work shall advance both the theoretical and experimental research for highest-order topological matters.Comment: 5+11 pages, 4+5 figure

    Manipulating task constraints shapes emergence of herding tendencies in team games performance

    Get PDF
    The herding phenomenon is observed in nature and has been perceived to be less desirable use of space in impacting overall team play performance. The effective manipulating of rules and task constraints might be able to alter herding tendencies in sport performance. The aim of this study was to determine the impact of altering task constraints on herding tendencies, measured with the use of cluster phase analysis, which has also been used to analyse the synchrony exhibited by performers in invasion games such as professional association football matches. In this study, tracking positional data of individual players in a simulated pass and catch game was undertaken, with no specific verbal instructions provided to participants on how and where to move so that emergent behavioural tendencies could be observed. Data revealed how task constraint manipulations impacted on herding tendencies. Manipulation of task constraints revealed higher levels of clustering tendencies in the herding condition compared to, the non-herding condition. Within the herding condition, between-team synchrony was also strong, especially in the longitudinal direction. Ball possession also seemed to have some impact on within-team synchrony. Findings provided preliminary evidence on how manipulating task constraints can be effective in altering herding tendencies in team games

    Neuroprotective Effect of Gui Zhi ( Ramulus Cinnamomi

    Get PDF
    Herb Ephedra (Ma Huang in Chinese) and Ramulus Cinnamomi (Gui Zhi in Chinese) are traditional Chinese herbs, often used together to treat asthma, nose and lung congestion, and fever with anhidrosis. Due to the adverse effects of ephedrine, clinical use of Ma Huang is restricted. However, Gui Zhi extract has been reported to decrease spontaneous activity in rats and exert anti-inflammatory and neuroprotective effects. The present study explored the possible inhibitory effect of Gui Zhi on Ma Huang-induced neurotoxicity in rats when the two herbs were used in combination. All Ma Huang and Ma Huang-Gui Zhi herb pair extracts were prepared using methods of traditional Chinese medicine and were normalized based on the ephedrine content. Two-month-old male Sprague-Dawley rats (n=6 rats/group) were administered Ma Huang or the Ma Huang-Gui Zhi herb pair extracts for 7 days (ephedrine = 48 mg/kg), and locomotor activity was measured. After 7 days, oxidative damage in the prefrontal cortex was measured. Gui Zhi decreased hyperactivity and sensitization produced by repeated Ma Huang administration and attenuated oxidative stress induced by Ma Huang. The results of this study demonstrate the neuroprotective potential of Gui Zhi in Ma Huang-induced hyperactivity and oxidative damage in the prefrontal cortex of rats when used in combination

    Activation of PI3K/AKT and MAPK Pathway through a PDGFRβ-Dependent Feedback Loop Is Involved in Rapamycin Resistance in Hepatocellular Carcinoma

    Get PDF
    Background: Rapamycin is an attractive approach for the treatment and prevention of HCC recurrence after liver transplantation. However, the objective response rates of rapamycin achieved with single-agent therapy were modest, supporting that rapamycin resistance is a frequently observed characteristic of many cancers. Some studies have been devoted to understanding the mechanisms of rapamycin resistance, however, the mechanisms are cell-type-dependent and studies on rapamycin resistance in HCC are extremely limited. Methodology/Principal Findings: The anti-tumor sensitivity of rapamycin was modest in vitro and in vivo. In both human and rat HCC cells, rapamycin up-regulated the expression and phosphorylation of PDGFRb in a time and dose-dependent manner as assessed by RT-PCR and western blot analysis. Using siRNA mediated knockdown of PDGFRb, we confirmed that subsequent activation of AKT and ERK was PDGFRb-dependent and compromised the anti-tumor activity of rapamycin. Then, blockade of this PDGFRb-dependent feedback loop by sorafenib enhanced the anti-tumor sensitivity of rapamycin in vitro and in an immunocompetent orthotopic rat model of HCC. Conclusions: Activation of PI3K/AKT and MAPK pathway through a PDGFRb-dependent feedback loop compromises the anti-tumor activity of rapamycin in HCC, and blockade of this feedback loop by sorafenib is an attractive approach t
    • …
    corecore