2,688 research outputs found

    Reply to Comment on "Quantum Phase Transition of Randomly-Diluted Heisenberg Antiferromagnet on a Square Lattice"

    Full text link
    This is a reply to the comment by A. W. Sandvik (cond-mat/0010433) on our paper Phys. Rev. Lett. 84, 4204 (2000). We show that his data do not conflict with our data nor with our conclusions.Comment: RevTeX, 1 page; Revised versio

    Aging of the Zero-Field-Cooled Magnetization in Ising Spin Glasses: Experiment and Numerical Simulation

    Full text link
    A new protocol of the zero-field-cooled (ZFC) magnetization process is studied experimentally on an Ising spin-glass (SG) Fe0.50_{0.50}Mn0.50_{0.50}TiO3_3 and numerically on the Edwards-Anderson Ising SG model. Although the time scales differ very much between the experiment and the simulation, the behavior of the ZFC magnetization observed in the two systems can be interpreted by means of a common scaling expression based on the droplet picture. The results strongly suggest that the SG coherence length, or the mean size of droplet excitations, involved even in the experimental ZFC process, is about a hundred lattice distances or less.Comment: 4 pages, 5 fugure

    The mitochondrial ribosome from Locusta migratoria

    Get PDF
    Mitochondrial ribosomes from locust thorax muscles have been identified recently in our labo-ratory by specific labelling of the adhering nascent peptide chains and have been isolated from mito

    Cluster derivation of Parisi's RSB solution for disordered systems

    Full text link
    We propose a general scheme in which disordered systems are allowed to sacrifice energy equi-partitioning and separate into a hierarchy of ergodic sub-systems (clusters) with different characteristic time-scales and temperatures. The details of the break-up follow from the requirement of stationarity of the entropy of the slower cluster, at every level in the hierarchy. We apply our ideas to the Sherrington-Kirkpatrick model, and show how the Parisi solution can be {\it derived} quantitatively from plausible physical principles. Our approach gives new insight into the physics behind Parisi's solution and its relations with other theories, numerical experiments, and short range models.Comment: 7 pages 5 figure

    Berry's phase in the multimode Peierls states

    Full text link
    It is shown that Berry's phase associated with the adiabatic change of local variables in the Hamiltonian can be used to characterize the multimode Peierls state, which has been proposed as a new type of the ground state of the two-dimensional(2D) systems with the electron-lattice interaction.Comment: 2 pages, 2 figure

    Development of Laser-induced Grating Spectroscopy for Underwater Temperature Measurement in Shock Wave Focusing Regions

    Get PDF
    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gasdynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results may be used to empirically establish the equation of states of water, gelatin or agar cells which will work as alternatives of human tissues

    Ultrafast Spin Dynamics in Nickel

    Full text link
    The spin dynamics in Ni is studied by an exact diagonalization method on the ultrafast time scale. It is shown that the femtosecond relaxation of the magneto-optical response results from exchange interaction and spin-orbit coupling. Each of the two mechanisms affects the relaxation process differently. We find that the intrinsic spin dynamics occurs during about 10 fs while extrinsic effects such as laser-pulse duration and spectral width can slow down the observed dynamics considerably. Thus, our theory indicates that there is still room to accelerate the spin dynamics in experiments.Comment: 4 pages, Latex, 4 postscript figure

    Magnetocrystalline Anisotropy Energy of a Transition Metal Monolayer: A Non-perturbative Theory

    Full text link
    The magnetocrystalline anisotropy energy EanisE_{anis} for a monolayer of Fe and Ni is determined using a fully convergent tight-binding calculation including ss-dd hybridization. The spin-orbit interaction λso\lambda_{so} is treated non-perturbatively. Remarkably, we find Eanisλso2E_{anis}\propto\lambda_{so}^2 and important contributions to EanisE_{anis} due to the lifting of degeneracies near the Fermi-level. This is supported by the calculated decrease of the anisotropy energy with increasing temperature on a scale of several hundred K. Our results clarify the present debate on the origin of EanisE_{anis}.Comment: 11 pages (RevTeX) with 2 figures, appended as Postscript file

    Effects of the Lattice Discreteness on a Soliton in the Su-Schrieffer-Heeger Model

    Full text link
    In this paper we analytically study the effects of the lattice discreteness on the electron band in the SSH model. We propose a modified version of the TLM model which is derived from the SSH model using a continuum approximation. When a soliton is induced in the electron-lattice system, the electron scattering states both at the bottom of the valence band and the top of the conduction band are attracted to the soliton. This attractive force induces weakly localized electronic states at the band edges. Using the modified version of the TLM model, we have succeeded in obtaining analytical solutions of the weakly localized states and the extended states near the bottom of the valence band and the top of the conduction band. This band structure does not modify the order parameters. Our result coincides well with numerical simulation works.Comment: to be appear in J.Phys.Soc.Jpn. Figures should be requested to the author. They will be sent by the conventional airmai

    Fully Frustrated Ising System on a 3D Simple Cubic Lattice: Revisited

    Full text link
    Using extensive Monte Carlo simulations, we clarify the critical behaviour of the 3 dimensional simple cubic Ising Fully Frustrated system. We find two transition temperatures and two long range ordered phases. Within the present numerical accuracy, the transition at higher temperature is found to be second order and we have extracted the standard critical exponent using finite size scaling method. On the other hand, the transition at lower temperature is found to be first order. It is argued that entropy plays a major role on determining the low temperature state.Comment: 14 pages 14 figures iop style include
    corecore