136 research outputs found

    Allelic losses on chromosome 3p are accumulated in relation to morphological changes of lung adenocarcinoma

    Get PDF
    We performed allelotyping analysis at nine regions on chromosome 3p using 56 microdissected samples from 23 primary lung adenocarcinomas to examine the process of progression within individual lung adenocarcinoma with various grades of differentiation. Identical allelic patterns among various grades of differentiation were found in eight cases. Accumulation of allelic losses from high to lower differentiated portions was found in seven cases and accumulation of allelic losses from low to higher differentiated portions was found in five cases. Various allelic patterns among various grades of differentiation were found in three cases. These results suggested that allelic losses on 3p play an important role in morphological changes of lung adenocarcinomas. We also investigated the relationship between allelic losses on 3p and histological subtypes of lung adenocarcinoma. The frequencies of allelic losses at 3p14.2 and telomeric region of 3p21.3 were higher in papillary type tumour (nine out of 14, 64% and 11 out of 15, 73%) than in bronchioloalveolar carcinoma-type tumour (one out of 8, 13%; P=0.031 and four out of 12, 33%; P = 0.057). These results indicated that allelic losses at 3p14.2 and telomeric region of 3p21.3 are related to pattern of the proliferation of lung adenocarcinoma

    Distribution of cytochrome P450 2C, 2E1, 3A4, and 3A5 in human colon mucosa

    Get PDF
    BACKGROUND: Despite the fact that the alimentary tract is part of the body's first line of defense against orally ingested xenobiotica, little is known about the distribution and expression of cytochrome P450 (CYP) enzymes in human colon. Therefore, expression and protein levels of four representative CYPs (CYP2C(8), CYP2E1, CYP3A4, and CYP3A5) were determined in human colon mucosa biopsies obtained from ascending, descending and sigmoid colon. METHODS: Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 mRNA in colon mucosa was determined by RT-PCR. Protein concentration of CYPs was determined using Western blot methods. RESULTS: Extensive interindividual variability was found for the expression of most of the genes. However, expression of CYP2C mRNA levels were significantly higher in the ascending colon than in the sigmoid colon. In contrast, mRNA levels of CYP2E1 and CYP3A5 were significantly lower in the ascending colon in comparison to the descending and sigmoid colon. In sigmoid colon protein levels of CYP2C8 were significantly higher by ~73% than in the descending colon. In contrast, protein concentration of CYP2E1 was significantly lower by ~81% in the sigmoid colon in comparison to the descending colon. CONCLUSION: The current data suggest that the expression of CYP2C, CYP2E1, and CYP3A5 varies in different parts of the colon

    MCM2 - a promising marker for premalignant lesions of the lung: a cohort study

    Get PDF
    BACKGROUND: Because cells progressing to cancer must proliferate, marker proteins specific to proliferating cells may permit detection of premalignant lesions. Here we compared the sensitivities of a classic proliferation marker, Ki-67, with a new proliferation marker, MCM2, in 41 bronchial biopsy specimens representing normal mucosa, metaplasia, dysplasia, and carcinoma in situ. METHODS: Parallel sections were stained with antibodies against MCM2 and Ki-67, and the frequencies of staining were independently measured by two investigators. Differences were evaluated statistically using the two-sided correlated samples t-test and Wilcoxon rank sum test. RESULTS: For each of the 41 specimens, the average frequency of staining by anti-MCM2 (39%) was significantly (p < 0.001) greater than by anti-Ki-67 (16%). In metaplastic lesions anti-MCM2 frequently detected cells near the epithelial surface, while anti-Ki-67 did not. CONCLUSIONS: We conclude that MCM2 is detectable in 2-3 times more proliferating premalignant lung cells than is Ki-67. The promise of MCM2 as a sensitive marker for premalignant lung cells is enhanced by the fact that it is present in cells at the surface of metaplastic lung lesions, which are more likely to be exfoliated into sputum. Future studies will determine if use of anti-MCM2 makes possible sufficiently early detection to significantly enhance lung cancer survival rates

    Stromal micropapillary pattern predominant lung adenocarcinoma - a report of two cases

    Get PDF
    Generally, adenocarcinomas with micropapillary pattern, featuring small papillary tufts lacking a central fibrovascular core, are thought to have poor prognosis. This pattern has been described in various organs. However, tumor cells with micropapillary pattern of lung adenocarcinoma are more often seen to float within alveolar spaces (aerogenous micropapillary pattern, AMP) than in fibrotic stroma like other organs (stromal micropapillary pattern, SMP) and SMP predominant lung adenocarcinoma (SMPPLA) has not been well described yet. We presented two cases of SMPPLA which were found in the last four years. Both the cases showed more than 50% of SMP in the tumor area. The majority of the stromal micropapillary clusters expressed MUC1 and epithelial membrane antigen along the outer surface of cell membrane. On the other hand, connective tissues surrounding stromal micropapillary clusters showed no reactivity for epithelial markers (thyroid transcription factor-1 and cytokeratin) or endothelial marker (D2-40 and CD34). It means clusters of SMP do not exist within air space or lymphatic or vessel lumens. The tumors with SMP often presented lymphatic permeation and vessel invasion, and intriguingly, one of the two cases showed metastasis to the mediastinal lymph node. Additionally, both the cases showed EGFR point mutations of exon 21. These results suggest that SMPPLA might be associated with poor prognosis and effective for EGFR tyrosine kinase inhibitors

    Structural and Functional Analysis of Validoxylamine A 7′-phosphate Synthase ValL Involved in Validamycin A Biosynthesis

    Get PDF
    Validamycin A (Val-A) is an effective antifungal agent widely used in Asian countries as crop protectant. Validoxylamine A, the core structure and intermediate of Val-A, consists of two C7-cyclitol units connected by a rare C-N bond. In the Val-A biosynthetic gene cluster in Streptomyces hygroscopicus 5008, the ORF valL was initially annotated as a validoxylamine A 7′-phosphate(V7P) synthase, whose encoded 497-aa protein shows high similarity with trehalose 6-phosphate(T6P) synthase. Gene inactivation of valL abolished both validoxylamine A and validamycin A productivity, and complementation with a cloned valL recovered 10% production of the wild-type in the mutant, indicating the involvement of ValL in validoxylamine A biosynthesis. Also we determined the structures of ValL and ValL/trehalose complex. The structural data indicates that ValL adopts the typical fold of GT-B protein family, featuring two Rossmann-fold domains and an active site at domain junction. The residues in the active site are arranged in a manner homologous to that of Escherichia coli (E.coli) T6P synthase OtsA. However, a significant discrepancy is found in the active-site loop region. Also noticeable structural variance is found around the active site entrance in the apo ValL structure while the region takes an ordered configuration upon binding of product analog trehalose. Furthermore, the modeling of V7P in the active site of ValL suggests that ValL might have a similar SNi-like mechanism as OtsA

    Specific Expression of Human Intelectin-1 in Malignant Pleural Mesothelioma and Gastrointestinal Goblet Cells

    Get PDF
    Malignant pleural mesothelioma (MPM) is a fatal tumor. It is often hard to discriminate MPM from metastatic tumors of other types because currently, there are no reliable immunopathological markers for MPM. MPM is differentially diagnosed by some immunohistochemical tests on pathology specimens. In the present study, we investigated the expression of intelectin-1, a new mesothelioma marker, in normal tissues in the whole body and in many cancers, including MPM, by immunohistochemical analysis. We found that in normal tissues, human intelectin-1 was mainly secreted from gastrointestinal goblet cells along with mucus into the intestinal lumen, and it was also expressed, to a lesser extent, in mesothelial cells and urinary epithelial cells. Eighty-eight percent of epithelioid-type MPMs expressed intelectin-1, whereas sarcomatoid-type MPMs, biphasic MPMs, and poorly differentiated MPMs were rarely positive for intelectin-1. Intelectin-1 was not expressed in other cancers, except in mucus-producing adenocarcinoma. These results suggest that intelectin-1 is a better marker for epithelioid-type MPM than other mesothelioma markers because of its specificity and the simplicity of pathological assessment. Pleural intelectin-1 could be a useful diagnostic marker for MPM with applications in histopathological identification of MPM

    Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy

    Get PDF
    Cytochrome P450 3A is a drug-metabolising enzyme activity due to CYP3A4 and CYP3A5 gene products, that is involved in the inactivation of anticancer drugs. This study analyses the potential of cytochrome P450 3A enzyme in human colorectal cancer to impact anticancer therapy with drugs that are cytochrome P450 3A substrates. Enzyme activity, variability and properties, and the ability to inactivate paclitaxel (taxol) were analysed in human colorectal cancer and healthy colorectal epithelium. Cytochrome P450 3A enzyme activity is present in healthy and tumoral samples, with a nearly 10-fold interindividual variability. Nifedipine oxidation activity±s.d. for colorectal cancer microsomes was 67.8±36.6 pmol min−1 mg−1. The Km of the tumoral enzyme (42±8 μM) is similar to that in healthy colorectal epithelium (36±8 μM) and the human liver enzyme. Colorectal cancer microsomes metabolised the anticancer drug paclitaxel with a mean activity was 3.1±1.2 pmol min−1 mg−1. The main metabolic pathway is carried out by cytochrome P450 3A, and it is inhibited by the cytochrome P450 3A-specific inhibitor ketoconazole with a KI value of 31 nM. This study demonstrates the occurrence of cytochrome P450 3A-dependent metabolism in colorectal cancer tissue. The metabolic activity confers to cancer cells the ability to inactivate cytochrome P450 3A substrates and may modulate tumour sensitivity to anticancer drugs
    corecore