114 research outputs found

    Asteroseismology of the Beta Cephei star Nu Eridani -- IV. The 2003-4 multisite photometric campaign and the combined 2002-4 data

    Full text link
    The second multisite photometric campaign devoted to Nu Eri is reported. For Nu Eri, analysis of the new data adds four independent frequencies to the nine derived previously from the 2002-3 data, three in the range from 7.20 to 7.93 c/d, and a low one, equal to 0.614 c/d. Combining the new and the old data results in two further independent frequencies, equal to 6.7322 and 6.2236 c/d. Altogether, the oscillation spectrum is shown to consist of 12 high frequencies and two low ones. The latter have u amplitudes about twice as large as the v and y amplitudes, a signature of high radial-order g modes. Thus, the suggestion that Nu Eri is both a Beta Cephei and an SPB star, put forward on the basis of the first campaign's data, is confirmed. Nine of the 12 high frequencies form three triplets, of which two are new. The triplets represent rotationally split l=1 modes, although in case of the smallest-amplitude one this may be questioned. Mean separations and asymmetries of the triplets are derived with accuracy sufficient for meaningful comparison with models. The first comparison star, Mu Eri, is shown to be an SPB variable with an oscillation spectrum consisting of six frequencies, three of which are equidistant in period. The star is also found to be an eclipsing variable. The eclipse is a transit, probably total, the secondary is fainter than the primary by several magnitudes, and the system is widely detached. The second comparison star, Xi Eri, is confirmed to be a Delta Scuti variable. To the frequency of 10.8742 c/d seen already in the first campaign's data, another one, equal to 17.2524 c/d, is added.Comment: 13 pages, 8 figures, MNRAS, in pres

    A multisite photometric study of two unusual Beta Cep stars: the magnetic V2052 Oph and the massive rapid rotator V986 Oph

    Full text link
    We report a multisite photometric campaign for the Beta Cep stars V2052 Oph and V986 Oph. 670 hours of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with eight telescopes on five continents during 182 nights. Frequency analyses of the V2052 Oph data enabled the detection of three pulsation frequencies, the first harmonic of the strongest signal, and the rotation frequency with its first harmonic. Pulsational mode identification from analysing the colour amplitude ratios confirms the dominant mode as being radial, whereas the other two oscillations are most likely l=4. Combining seismic constraints on the inclination of the rotation axis with published magnetic field analyses we conclude that the radial mode must be the fundamental. The rotational light modulation is in phase with published spectroscopic variability, and consistent with an oblique rotator for which both magnetic poles pass through the line of sight. The inclination of the rotation axis is 54o <i< 58o and the magnetic obliquity 58o <beta< 66o. The possibility that V2052 Oph has a magnetically confined wind is discussed. The photometric amplitudes of the single oscillation of V986 Oph are most consistent with an l=3 mode, but this identification is uncertain. Additional intrinsic, apparently temporally incoherent, light variations of V986 Oph are reported. Different interpretations thereof cannot be distinguished at this point, but this kind of variability appears to be present in many OB stars. The prospects of obtaining asteroseismic information for more rapidly rotating Beta Cep stars, which appear to prefer modes of higher l, are briefly discussed.Comment: 12 pages, 8 figures, MNRAS, in pres

    A Double-Mode RR Lyrae Star with a Strong Fundamental Mode Component

    Full text link
    NSVS 5222076, a thirteenth magnitude star in the Northern Sky Variability Survey, was identified by Oaster as a possible new double-mode RR Lyrae star. We confirm the double-mode nature of NSVS 5222076, supplementing the survey data with new V band photometry. NSVS 5222076 has a fundamental mode period of 0.4940 day and a first overtone period of 0.3668 day. Its fundamental mode light curve has an amplitude twice as large as that of the first overtone mode, a ratio very rarely seen. Data from the literature are used to discuss the location in the Petersen diagram of double-mode RR Lyrae stars having strong fundamental mode pulsation. Such stars tend to occur toward the short period end of the Petersen diagram, and NSVS 5222976 is no exception to this rule.Comment: 14 pages, 4 figures, To be published in the March, 2006, issue of PAS

    Asteroseismology of the Beta Cephei star 12 (DD) Lacertae: photometric observations, pulsational frequency analysis and mode identification

    Get PDF
    We report a multisite photometric campaign for the Beta Cephei star 12 Lacertae. 750 hours of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with 9 telescopes during 190 nights. Our frequency analysis results in the detection of 23 sinusoidal signals in the light curves. Eleven of those correspond to independent pulsation modes, and the remainder are combination frequencies. We find some slow aperiodic variability such as that seemingly present in several Beta Cephei stars. We perform mode identification from our colour photometry, derive the spherical degree l for the five strongest modes unambiguously and provide constraints on l for the weaker modes. We find a mixture of modes of 0 <= l <= 4. In particular, we prove that the previously suspected rotationally split triplet within the modes of 12 Lac consists of modes of different l; their equal frequency splitting must thus be accidental. One of the periodic signals we detected in the light curves is argued to be a linearly stable mode excited to visible amplitude by nonlinear mode coupling via a 2:1 resonance. We also find a low-frequency signal in the light variations whose physical nature is unclear; it could be a parent or daughter mode resonantly coupled. The remaining combination frequencies are consistent with simple light-curve distortions. The range of excited pulsation frequencies of 12 Lac may be sufficiently large that it cannot be reproduced by standard models. We suspect that the star has a larger metal abundance in the pulsational driving zone, a hypothesis also capable of explaining the presence of Beta Cephei stars in the LMC.Comment: 12 pages, 7 figures, MNRAS, in pres

    CU Comae: a new field double-mode RR Lyrae, the most metal poor discovered to date

    Get PDF
    We report the discovery of a new double-mode RR Lyrae variable (RRd) in the field of our Galaxy: CU Comae. CU Comae is the sixth such RRd identified to date and is the most metal-poor RRd ever detected. Based on BVI CCD photometry spanning eleven years of observations, we find that CU Comae has periods P0=0.5441641 +/-0.0000049d and P1=0.4057605 +/-0.0000018d. The amplitude of the primary (first-overtone) period of CU Comae is about twice the amplitude of the secondary (fundamental) period. The combination of the fundamental period of pulsation P0 and the period ratio of P1/P0=0.7457 places the variable on the metal-poor side of the Petersen diagram, in the region occupied by M68 and M15 RRd's. A mass of 0.83 solar masses is estimated for CU Comae using an updated theoretical calibration of the Petersen diagram. High resolution spectroscopy (R=30,000) covering the full pulsation cycle of CU Comae was obtained with the 2.7 m telescope of the Mc Donald Observatory, and has been used to build up the radial velocity curve of the variable. Abundance analysis done on the four spectra taken near minimum light (phase: 0.54 -- 0.71) confirms the metal poor nature of CU Comae, for which we derive [Fe/H]=-2.38 +/-0.20. This value places this new RRd at the extreme metal-poor edge of the metallicity distribution of the RR Lyrae variables in our Galaxy.Comment: 21 pages including 8 Tables, Latex, 11 Figures. Accepted for publication in The Astronomical Journal, October 2000 issu

    The MACHO Project LMC Variable Star Inventory. IX. Frequency Analysis of the First Overtone RR Lyrae Stars and the Indication for Nonradial Pulsations

    Full text link
    More than 1300 variables classified provisionally as first overtone RR Lyrae pulsators in the MACHO variable star database of the Large Magellanic Cloud (LMC) have been subjected to standard frequency analysis. Based on the remnant power in the prewhitened spectra, we found 70% of the total population to be monoperiodic. The remaining 30% (411 stars) are classified as one of 9 types according to their frequency spectra. Several types of RR Lyrae pulsational behavior are clearly identified here for the first time. Together with the earlier discovered double-mode (fundamental & first overtone) variables this study increased the number of the known double-mode stars in the LMC to 181. During the total 6.5yr time span of the data, 10% of the stars show strong period changes. We also discovered two additional types of multifrequency pulsators with low occurrence rates of 2% for each. In the first type there remains one closely spaced component after prewhitening by the main pulsation frequency. In the second type the number of remnant components is two, they are also closely spaced, and, in addition, they are symmetric in their frequency spacing relative to the central component. This latter type of variables is associated with their relatives among the fundamental pulsators, known as Blazhko variables. Their high frequency (~20%) among the fundamental mode variables versus the low occurrence rate of their first overtone counterparts makes it more difficult to explain Blazhko phenomenon by any theory depending mainly on the role of aspect angle or magnetic field. Current theoretical models invoke nonradial pulsation components in these stars.Comment: 20 pages, 21 figures (bitmapped), 7 tables, to appear in Ap.

    Catalog of Galactic Beta Cephei Stars

    Full text link
    We present an extensive and up-to-date catalog of Galactic Beta Cephei stars. This catalog is intended to give a comprehensive overview of observational characteristics of all known Beta Cephei stars. 93 stars could be confirmed to be Beta Cephei stars. For some stars we re-analyzed published data or conducted our own analyses. 61 stars were rejected from the final Beta Cephei list, and 77 stars are suspected to be Beta Cephei stars. A list of critically selected pulsation frequencies for confirmed Beta Cephei stars is also presented. We analyze the Beta Cephei stars as a group, such as the distributions of their spectral types, projected rotational velocities, radial velocities, pulsation periods, and Galactic coordinates. We confirm that the majority of these stars are multiperiodic pulsators. We show that, besides two exceptions, the Beta Cephei stars with high pulsation amplitudes are slow rotators. We construct a theoretical HR diagram that suggests that almost all 93 Beta Cephei stars are MS objects. We discuss the observational boundaries of Beta Cephei pulsation and their physical parameters. We corroborate that the excited pulsation modes are near to the radial fundamental mode in frequency and we show that the mass distribution of the stars peaks at 12 solar masses. We point out that the theoretical instability strip of the Beta Cephei stars is filled neither at the cool nor at the hot end and attempt to explain this observation

    The 2003-4 multisite photometric campaign for the Beta Cephei and eclipsing star 16 (EN) Lacertae with an Appendix on 2 Andromedae, the variable comparison star

    Get PDF
    A multisite photometric campaign for the Beta Cephei and eclipsing variable 16 Lacertae is reported. 749 h of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with ten telescopes during 185 nights. After removing the pulsation contribution, an attempt was made to solve the resulting eclipse light curve by means of the computer program EBOP. Although a unique solution was not obtained, the range of solutions could be constrained by comparing computed positions of the secondary component in the Hertzsprung-Russell diagram with evolutionary tracks. For three high-amplitude pulsation modes, the uvy and the Geneva UBG amplitude ratios are derived and compared with the theoretical ones for spherical-harmonic degrees l <= 4. The highest degree, l = 4, is shown to be incompatible with the observations. One mode is found to be radial, one is l = 1, while in the remaining case l = 2 or 3. The present multisite observations are combined with the archival photometry in order to investigate the long-term variation of the amplitudes and phases of the three high-amplitude pulsation modes. The radial mode shows a non-sinusoidal variation on a time-scale of 73 yr. The l = 1 mode is a triplet with unequal frequency spacing, giving rise to two beat-periods, 720.7 d and 29.1 yr. The amplitude and phase of the l = 2 or 3 mode vary on time-scales of 380.5 d and 43 yr. The light variation of 2 And, one of the comparison stars, is discussed in the Appendix.Comment: 18 pages, 19 figures, accepted for publication in MNRA

    Testing Rotational Mixing Predictions with New Boron Abundances in Main Sequence B-type Stars

    Full text link
    (Abridged) New boron abundances for seven main-sequence B-type stars are determined from HST STIS spectroscopy around the BIII 2066A line. Boron abundances provide a unique and critical test of stellar evolution models that include rotational mixing since boron is destroyed in the surface layers of stars through shallow mixing long before other elements are mixed from the stellar interior through deep mixing. Boron abundances range from 12+log(B/H) = 1.0 to 2.2. The boron abundances are compared to the published values of their stellar nitrogen abundances (all have 12+log(N/H) < 7.8, i.e., they do not show significant CNO-mixing) and to their host cluster ages (4 to 16 Myr) to investigate the predictions from models of massive star evolution with rotational mixing effects (Heger & Langer 2000). Only three stars (out of 34) deviate from the model predictions, including HD36591, HD205021, and HD30836. These three stars suggest that rotational mixing could be more efficient than currently modelled at the highest rotation rates.Comment: 10 figures, 7 tables; accepted for publication in the Astrophysical Journa
    corecore