38 research outputs found

    A Signature of Maternal Anti-Fetal Rejection in Spontaneous Preterm Birth: Chronic Chorioamnionitis, Anti-Human Leukocyte Antigen Antibodies, and C4d

    Get PDF
    Chronic chorioamnionitis is found in more than one-third of spontaneous preterm births. Chronic chorioamnionitis and villitis of unknown etiology represent maternal anti-fetal cellular rejection. Antibody-mediated rejection is another type of transplantation rejection. We investigated whether there was evidence for antibody-mediated rejection against the fetus in spontaneous preterm birth.This cross-sectional study included women with (1) normal pregnancy and term delivery (n = 140) and (2) spontaneous preterm delivery (n = 140). We analyzed maternal and fetal sera for panel-reactive anti-HLA class I and class II antibodies, and determined C4d deposition on umbilical vein endothelium by immunohistochemistry. Maternal anti-HLA class I seropositivity in spontaneous preterm births was higher than in normal term births (48.6% vs. 32.1%, p = 0.005). Chronic chorioamnionitis was associated with a higher maternal anti-HLA class I seropositivity (p<0.01), significant in preterm and term birth. Villitis of unknown etiology was associated with increased maternal and fetal anti-HLA class I and II seropositivity (p<0.05, for each). Fetal anti-HLA seropositivity was closely related to maternal anti-HLA seropositivity in both groups (p<0.01, for each). C4d deposition on umbilical vein endothelium was more frequent in preterm labor than term labor (77.1% vs. 11.4%, p<0.001). Logistic regression analysis revealed that chronic chorioamnionitis (OR = 6.10, 95% CI 1.29–28.83), maternal anti-HLA class I seropositivity (OR = 5.90, 95% CI 1.60–21.83), and C4d deposition on umbilical vein endothelium (OR = 36.19, 95% CI 11.42–114.66) were associated with preterm labor and delivery.A major subset of spontaneous preterm births has a signature of maternal anti-fetal cellular and antibody-mediated rejections with links to fetal graft-versus-host disease and alloimmune reactions

    Identification of the nonclassical HLA molecules, mica, as targets for humoral immunity associated with irreversible rejection of kidney allografts.

    No full text
    BACKGROUND: A substantial portion of kidney allografted patients experience early acute rejection episodes and even irreversible rejections in the early posttransplantation period. The presence of HLA alloantibodies before grafting is associated with early immunological complications, but in many patients rejections and graft loss occur even in the absence of such antibodies. METHODS: In this study, 748 serum samples taken before and at various time points after kidney transplantation from 139 patients were investigated for the presence, frequency, and specificity of kidney microvascular endothelial cell (KMEC)-reactive antibodies using major histocompatability class (MHC) I-related chain A (MICA) transfected cells and flow cytometry, antibody blocking experiments, and Western blotting. The ability of MICA-specific antibodies to fix complement and to induce a prothrombotic phenotype in KMECs was investigated. RESULTS: A polymorphic, 62 kDa nonclassical HLA class I molecule is identified as a new target molecule for reactivity in sera from patients with irreversible rejections. Specific blocking and transfection experiments verified the target molecule as MICA. A significant correlation was established for pre- or posttransplantation MICA humoral immunity and graft loss (P&lt;0.001). MICA-specific antibody titers increased in the posttransplantation period and were present before any signs of clinical rejection. MICA antibody-containing patient sera induced a prothrombotic phenotype in KMECs. CONCLUSION: The increasing polymorphism detected at the MIC loci combined with the results of this study suggest that typing for the MIC loci and crossmatching for the detection of anti-MIC antibodies before transplantation should be used routinely. A better recipient-donor selection based on a negative crossmatch for both anti-donor HLA and MICA antibodies will decrease early graft rejections and losses

    Tumour necrosis factor α impairs function of liver derived T lymphocytes and natural killer cells in patients with primary sclerosing cholangitis

    No full text
    BACKGROUND—Primary sclerosing cholangitis (PSC) is considered to be a chronic autoimmune disease where infiltrating T lymphocytes have been implicated in the destruction of bile ducts. Altered function of these T cells may reflect abnormalities in the immune response leading to tissue damage.‹AIM—We investigated the proliferative and functional capacity of freshly isolated liver derived T lymphocytes (LDLs) and natural killer (NK) cells from PSC patients.‹METHODS—The proliferative responses to common mitogens such as phytohaemagglutinin (PHA), concanavalin A (Con A), and lipopolysaccharide (LPS) were studied, and the cytotoxic function of T lymphocytes was measured using allogeneic target cells. NK (CD56(+)/16(+)) cytotoxic function was measured using the two cell lines K562 (NK sensitive) and Raji lymphoma cells (NK resistant).‹RESULTS—Compared with patients with primary biliary cirrhosis (PBC), autoimmune hepatitis (AIH), and normal controls (without liver disease), in PSC: (1) LDLs contained a low percentage of T cells; (2) there was significantly decreased expression of interleukin (IL)-2 receptor (p<0.001) on activated T cells (HLA-DR(+)); (3) LDLs but not peripheral blood lymphocytes had significantly impaired proliferative responses to mitogens such as PHA, Con A, and LPS (p< 0.001); (4) no cytotoxic activity of PSC liver T and NK cells was recorded; (5) significantly higher levels of tumour necrosis factor α (TNF-α) and IL-1ÎČ but lower levels of IL-2, IL-10, and interferon γ were found in the supernatants of mitogen stimulated LDL cultures (p<0.001); (6) higher percentages of freshly isolated PSC LDLs contained intracytoplasmic TNF-α and IL-1ÎČ; and (7) pretreatment of PSC LDLs in vitro with neutralising TNF antibodies significantly enhanced proliferative responses and allowed IL-2 receptor expression following stimulation. In addition, the impaired cytolytic activity of both NK and T cells was partially restored. Impaired proliferative or functional capacity of liver derived T cells was not observed in either PBC or AIH patients.‹CONCLUSIONS—We suggest that reduced T cell reactivity in liver infiltrating cells obtained from patients with PSC is due to high local production of TNF-α. Our findings indicate that the use of anti-TNF antibodies as an alternative treatment for PSC patients should be evaluated.‹‹‹Keywords: autoimmune liver diseases; biliary epithelial cells; cytokine

    Activated porcine embryonic brain endothelial cells induce a proliferative human T-lymphocyte response

    No full text
    Transplantation of allogeneic embryonic neural tissue is a potential treatment for patients with Parkinson's and Huntington's diseases. The supply of human donor tissue is limited, and alternatives such as the use of animal (e.g., porcine) donor tissue are currently being evaluated. Before porcine grafts can be used clinically, strategies to prevent neural xenograft rejection must be developed. Knowledge on how human T lymphocytes recognize porcine embryonic neural tissue would facilitate the development of such strategies. To investigate the ability of porcine embryonic brain microvascular endothelial cells (PBMEC) to stimulate human T-cell proliferation, PBMEC were immuno-magnetically isolated and cocultured with purified human CD4 or CD8 single-positive T cells. PBMEC had a cobblestone-like growth pattern and expressed the endothelial cell markers CD31 and CD106. PBMEC stimulated with the supernatant of phytohemagglutinin-activated porcine peripheral blood mononuclear cells or porcine IFN-gamma, but not nonstimulated PBMEC, induced proliferation of both CD8 and CD4 T cells as assessed by [H-3]thymidine incorporation. Flow cytometric analyses showed that the degree of CD8 and CD4 T cell proliferation correlated with the expression levels of class I and 11 major histocompatibility complex (MHC) antigens, respectively. PBMEC expressed a CTLA-4/Fc-reactive molecule, most likely CD86, suggesting that these cells are able to deliver a costimulatory signal to the T cells. Human TNF-alpha, but not human IFN-gamma, induced class I, but not class II, MHC expression on PBMEC. Within a neural graft or the regional lymph nodes, PBMEC might stimulate human T cells via the direct pathway, and should therefore be removed from the donor tissue prior to transplantation

    Induction of transendothelial migration in normal and malignant human T lymphocytes.

    No full text
    Activated CD 3+ enriched human peripheral blood T cells exhibited potent capacity for transendothelial migration through HUVEC layers in the absence of T cell ***. In contrast, malignant human T cell lines *** no or negligible ability of transendothelial migration in the absence of chemoattractants. Time lapse studies of transendothelial migration of activated CD 3+ enriched peripheral blood T cells through a HUVEC layer showed that the first T cells were detected in the lower compartment of a tissue culture insert after 1 hour and that migration increased to reach a maximum of 25 x 10(4) T cells/hr after 24 hours. Adhesion assays of human T cell lines demonstrated that all T cell lines were capable of adhesion to HUVEC and that adhesion of T cells to HUVECs was primarily mediated by CD11a/CD18 and ICAM-1 interactions. Furthermore, transendothelial migration of CD 3+ enriched human peripheral blood T cells was inhibited by pretreating the T cells with anti-CD 18 monoclonal antibodies. The inability of malignant T cells to migrate through HUVEC layers in the absence of chemoattractants was not due to poor motility per se, since both normal and malignant T cells migrated well on extracellular matrix components as determined by using Boyden chambers. Crosslinking of alpha 1 beta 2 and alpha 4 beta 1 with immobilized monoclonal antibodies induced motile behaviour in activated CD 3 enriched human peripheral blood T cells but not in malignant T cell lines. In conclusion, the differences in the ability of transendothelial migration between normal and malignant human T cells in the absence of chemoattractants is primarily due to the differences in the capacity of alpha 1 beta 2 and alpha 4 beta 1 to trigger motile behaviour in the separate cell types

    Identification of expandable human hepatic progenitors which differentiate into mature hepatic cells in vivo

    No full text
    Background: Liver diseases include a wide spectrum of both acute and chronic conditions which are associated with significant morbidity and mortality worldwide. Hepatocyte transplantation has therapeutic potential in the treatment of liver diseases, but its clinical use is hampered by the lack of donor tissue. Generation of hepatocytes in vitro from adult or fetal liver cell progenitors or, alternatively, identification of a progenitor population which in vivo can generate mature liver cells could solve this problem. Methods: CD117+/CD34+/Lin− human fetal liver cells were isolated by magnetic cell sorting and expanded in culture. Both freshly isolated and in vitro expanded cells in various passages were studied for their ability to be functional in hepatic parenchyma following d-galactosamine (GalN) induced injury in nude C57 black mice. Results: Freshly isolated and in vitro expanded CD117+/CD34+/Lin− cells, when transplanted intrasplenically into GalN treated mice, morphologically and functionally differentiated into hepatocytes and cholangiocytes. Human specific albumin, α fetoprotein, cytokeratin 19, and antitrypsin mRNA were expressed in mouse liver. In addition, the human progenitor cells expressed glucose-6-phosphatase, glycogen, albumin, gamma glutamyl transpeptidase, and dipeptidyl peptidase IV after transplantation. Expanded cells in various passages maintained their capacity to differentiate into functional liver cells. Conclusions: Fetal liver CD117+/CD34+/Lin− progenitors and their progeny proliferated in vitro and also functionally differentiated into mature hepatic cells in an acute liver injury model. Successful in vitro expansion of liver progenitor cells provides a basis for developing cell therapy strategies, metabolic and toxicity testing systems, and may serve as a vehicle for gene therapy

    Human liver sinusoidal endothelial cells induce apoptosis in activated T cells: a role in tolerance induction

    No full text
    BACKGROUND: The liver may have a role in peripheral tolerance, by serving as a site for trapping, apoptosis and phagocytosis of activated T cells. It is not known which hepatic cells are involved in these processes. It was hypothesised that liver sinusoidal endothelial cells (LSEC) which are strategically placed for participation in the regulation of sinusoidal blood flow, and express markers involved in recognition, sequestration and apoptosis, may contribute to peripheral tolerance by inducing apoptosis of activated T cells. METHODS: By using immunoassays and western blot analysis, the fate of activated T cells when incubated with human LSEC isolated from normal healthy livers was investigated. RESULTS: Evidence that activated (approximately 30%) but not non‐activated T cells undergo apoptosis on incubation with human LSEC in mixed cell cultures is provided. No difference in the results was observed when unstimulated and cytokine‐stimulated LSEC were used. T cell–LSEC contact is required for induction of apoptosis. Apoptosis induced by LSEC was associated with caspase 8 and 3 activity and strong expression of the proapoptotic molecule Bak. Transforming growth factor ÎČ (TGFÎČ) produced constitutively by LSEC is partly responsible for the caspase‐induced apoptosis, as neutralising antibodies to TGFÎČ markedly attenuated apoptosis, up regulated the antiapoptotic molecule Bcl‐2 and partially blocked caspase‐3 activity. CONCLUSION: These findings broaden the potential role of LSEC in immune tolerance and homeostasis of the immune system. This study may provide insight for exploring the mechanisms of immune tolerance by liver allografts, immune escape by some liver pathogens including hepatitis C and pathogenesis of liver diseases
    corecore