10 research outputs found

    Discrimination of thermal diffusivity

    No full text
    Materials such as wood or metal which are at equal temperatures are perceived to be of different ‘coldness’ due to differences in thermal properties, such as the thermal diffusivity. The thermal diffusivity of a material is a parameter that controls the rate with which heat is extracted from the hand when it touches an object of that material. This rate of heat extraction is an important cue for distinguishing materials and recognising objects by means of touch. We have measured the ability of human observers to discriminate between different rates of heat extraction. This was done using a device that displayed different transient temperature profiles to the finger. In different conditions, subjects were repeatedly asked to select the faster-cooling of two stimuli. The discrimination threshold was around 43% of the extraction rate. A rate that was twice as slow also yielded twice the absolute discrimination threshold. When we halved the temperature difference between beginning and end of the stimulus, the threshold did not change as much. This shows that subjects can use the rate of heat extraction as a cue and that they can discriminate between materials if their thermal diffusivities are at least 43% apar

    Perceptual incongruence influences bistability and cortical activation

    No full text
    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry). Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A) were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflic

    Bimanual Volume Perception of 3-D Objects

    No full text
    In the present study, blindfolded subjects had to explore differently shaped objects with two hands and to judge their volume. The results showed a significant effect of the shape of objects on their perceived volume. Additional analysis showed that this effect could not be explained by the subjects’ tendency to base the volume judgment on a specific object dimension other than the volume itself. This contrasts with the results from previous studies, which used cylindrical objects or objects that could fit in one hand, in which the effect of shape on volume perception could be explained by the height/width ratio or the surface area of objects, respectively

    Cutaneous and Kinaesthetic Perception of Traversed Distance

    No full text
    Discrimination thresholds for tactually perceived traversed distance were measured in three conditions: cutaneous-only, kinaestheticonly and combined information. The results were 25 mm (32 %) in the first and 11 mm (14 %) in the latter two conditions. Although cutaneous length perception was shown to be possible, perception in the combined condition was found to be mainly based on kinaesthetic information. The maximum-likelihood estimation model of cue combination was not supported

    Visually guided haptic search

    No full text
    In this study, we investigate the influence of visual feedback on haptic exploration. A haptic search task was designed in which subjects had to haptically explore a virtual display using a force-feedback device and to determine whether a target was present among distractor items. Although the target was recognizable only haptically, visual feedback of finger position or possible target positions could be given. Our results show that subjects could use visual feedback on possible target positions even in the absence of feedback on finger position. When there was no feedback on possible target locations, subjects scanned the whole display systematically. When feedback on finger position was present, subjects could make well-directed movements back to areas of interest. This was not the case without feedback on finger position, indicating that showing finger position helps to form a spatial representation of the display. In addition, we show that response time models of visual serial search do not generally apply for haptic serial search. Consequently, in teleoperation systems, for instance, it is helpful to show the position of the probe even if visual information on the scene is poor

    Opposite Influence of Perceptual Memory on Initial and Prolonged Perception of Sensory Ambiguity

    No full text
    Observers continually make unconscious inferences about the state of the world based on ambiguous sensory information. This process of perceptual decision-making may be optimized by learning from experience. We investigated the influence of previous perceptual experience on the interpretation of ambiguous visual information. Observers were pre-exposed to a perceptually stabilized sequence of an ambiguous structure-from-motion stimulus by means of intermittent presentation. At the subsequent re-appearance of the same ambiguous stimulus perception was initially biased toward the previously stabilized perceptual interpretation. However, prolonged viewing revealed a bias toward the alternative perceptual interpretation. The prevalence of the alternative percept during ongoing viewing was largely due to increased durations of this percept, as there was no reliable decrease in the durations of the pre-exposed percept. Moreover, the duration of the alternative percept was modulated by the specific characteristics of the pre-exposure, whereas the durations of the pre-exposed percept were not. The increase in duration of the alternative percept was larger when the pre-exposure had lasted longer and was larger after ambiguous pre-exposure than after unambiguous pre-exposure. Using a binocular rivalry stimulus we found analogous perceptual biases, while pre-exposure did not affect eye-bias. We conclude that previously perceived interpretations dominate at the onset of ambiguous sensory information, whereas alternative interpretations dominate prolonged viewing. Thus, at first instance ambiguous information seems to be judged using familiar percepts, while re-evaluation later on allows for alternative interpretation

    Widespread fMRI activity differences between perceptual states in visual rivalry are correlated with differences inobserver biases

    No full text
    When observing bistable stimuli, the percept can change in the absence of changes in the stimulus itself. When intermittently presenting a bistable stimulus, the number of perceptual alternations can increase or decrease, depending on the duration of the period that the stimulus is removed from screen between stimulus presentations (off-period). Longer off-periods lead to stabilization of the percept, while short off-periods produce perceptual alternations. Here we compare fMRI brain activation across percept repetitions and alternations when observing an intermittently presented ambiguously rotating structure from motion sphere. In the first experimental session, subjects were requested to voluntarily control the percept into either a repeating or an alternating perceptual regime at a single off-period. In a consecutive session, subjects observed the sphere uninstructed, and reported alternations and repetitions. The behavioral data showed that there were marked individual biases for observing the sphere as either repeating or alternating. The fMRI data showed activation differences between alternating and repeating perceptual regimes in an extensive network that included parietal cortex, dorsal premotor area, dorsolateral prefrontal cortex, supplementary motor area, insula, and cerebellum. However, these activation differences could all be explained by intersubject differences in the bias for one of the two perceptual regimes. The stronger the bias was for a particular perceptual regime, the less activation and vice versa. We conclude that widespread activation differences between perceptual regimes can be accounted for by differences in the perceptual bias for one of the two regime
    corecore